Licence M.A.S.S. deuxième année 2010 - 2011

Algèbre S4

Contrôle continu n°1, mars 2011

Examen de 1h30. Tout document ou calculatrice est interdit.

1. (20 points) Soit E l'ensemble des fonctions de classe C^1 sur [-1,1] et pour f,g deux fonctions de E, on considère l'application

$$\langle f, g \rangle = f(0)g(0) + \int_{-1}^{1} f'(t)g'(t)dt.$$

- (a) Montrer que E est un espace vectoriel. Montrer que dim $E=\infty$.
- (b) Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- (c) Soit F_m l'ensemble des fonctions de E monotones sur [-1,1]. Montrer que F_m n'est pas un sous-espace vectoriel de E. Rappeler la définition de F_m^{\perp} ; cet ensemble est-il un sous-espace vectoriel de E (le démontrer)?
- (d) Soit F_p et F_i l'ensemble des fonctions de E respectivement paires et impaires. Montrer que F_p et F_i sont des sous-espaces vectoriels de E.
- (e) Montrer que $E = F_p \oplus F_i$ (on pourra utiliser le fait que pour tout $x \in [-1,1], f(x) =$ $\frac{1}{2}(f(x)+f(-x))+\frac{1}{2}(f(x)-f(-x)).$
- (f) Montrer que si $f \in E$ est impaire alors f' est paire. Montrer que $F_p \subset F_i^{\perp}$ puis montrer que $F_p = F_i^{\perp}$.
- (g) On remplace désormais E par $E' = \mathbf{R}_2[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur à 2, en conservant le même produit scalaire $\langle \cdot, \cdot \rangle$. Déterminer des bases orthonormales de F_p et de F_i dans ce cas. En déduire une base orthonormale de E'. Déterminer enfin F_m^{\perp} .

Proof. (a) On montre facilement que E est un sev de l'ensemble des fonctions de \mathbf{R} dans \mathbf{R} [1pt].

La famille de fonctions $(1, x, x^2, \dots)$, qui est une famille libre et infinie, appartient à E donc dim $E = \infty$ [1pt].

- (b) La symétrie, la linéarité et la positivité sont évidentes [1pt]. Montrons que $\langle f, f \rangle = 0 \Longrightarrow f = 0_E$. Mais $< f, f> = f^2(0) + \int_{-1}^{1} (f'(t))^2 dt$ donc $< f, f> = 0 \implies f(0) = 0$ et $\int_{-1}^{1} (f'(t))^2 dt = 0$. Comme f' est une fonction continue, il en est de même pour $(f')^2$ qui est positive: d'après un résultat du cours, on a donc $(f'(t))^2 = 0$ pour $t \in [-1,1]$, soit f'(t) = 0 pour $t \in [-1,1]$. De cela on en déduit que f(t) = c pour $t \in [-1,1]$ avec c une constante réelle, mais comme f(0) = 0 on en déduit que $f = 0_E$ [2pts].
- (c) Si on considère les fonctions f et g définies sur [-1,1] telles que $f(x)=x^2$ pour $x\in[0,1]$ et 0 sinon, $g(x)=x^2$ pour $x\in[-1,0]$ et 0 sinon, il est clair que f et g sont dans F_m (de classe C^1 sur $[-1,0]\cup[0,1]$ clairement, mais également en 0 en regardant la limite en 0 de f' et de g'). Mais f+g n'est clairement pas une fonction monotone. Donc F_m n'est pas stable par l'addition donc ce n'est pas un sev de E [2pts]. On a $F_m^{\perp} = \{ f \in E, \forall g \in F_m, \langle f, g \rangle = 0 \}$ [0.5pts]. On reprend la démonstration du cours pour montrer que
- F_m^{\perp} est un sev de E [0.5pts].
- (d) Si f_1 et f_2 sont paires, pour tout $x \in [-1,1]$, $\lambda_1 f_1(-x) + \lambda_2 f_2(-x) = \lambda_1 f_1(x) + \lambda_2 f_2(x)$ donc $\lambda_1 f_1 + \lambda_2 f_2$ est paire: F_p est un sev de E (même chose pour F_i) [0.5pts].
- (e) Si $f \in F_i \cap F_p$ alors pour tout $x \in [-1,1]$, f(-x) = f(x) car $f \in F_p$ et f(-x) = -f(x) car $f \in F_i$, donc f(x) = -f(x), ce qui implique que f(x) = 0. Donc $F_i \cap F_p = \{0_E\}$ [0.5pts]. De plus, comme f(x) = 0

 $\frac{1}{2}(f(x)+f(-x))+\frac{1}{2}(f(x)-f(-x))$ avec $f_p(x)=\frac{1}{2}(f(x)+f(-x))$ une fonction paire et $f_i(x)=\frac{1}{2}(f(x)-f(-x))$ une fonction impaire, on voit que toute fonction de E s'écrit comme la somme d'une fonction paire et d'une fonction impaire. On en déduit que $E=F_p+F_i$ et avec ce qui précède, $E=F_p\oplus F_i$ [1pt].

(f) Si on a f(x) = f(-x) pour tout $x \in [-1, 1]$, alors en dérivant f'(x) = -f'(-x) donc f' est bien impaire (et vice-versa) [0.5pts].

Soit $f \in F_p$, donc f' est impaire. Alors pour toute fonction $g \in F_i$ donc pour g impaire, soit g' paire, $\langle f, g \rangle = f(0)g(0) + \int_{-1}^{1} f'(t)g'(t)dt$. Mais comme g est impaire, g(0) = 0 et comme la fonction f'g' est impaire (produit d'une fonction paire par une fonction impaire), on en déduit que $\int_{-1}^{1} f'(t)g'(t)dt = 0$. Ainsi $\langle f, g \rangle = 0$, donc $f \in F_i^{\perp}$. En conséquence, on a bien $F_p \subset F_i^{\perp}$ [1.5pts].

Soit $f \in F_i^{\perp}$. On peut donc écrire $f = f_p + f_i$ d'après (e). Par définition, pour tout $g \in F_i$, on a $< f_p + f_i, g_i > = 0$. Comme f_p est paire et g_i impaire, comme précédemment, $< f_p, g_i > = 0$. Par suite on a nécessairement $< f_i, g_i > = 0$. Mais ceci doit être aussi vrai pour $g_i = f_i$ puisque ceci est vrai pour toute fonction $g_i \in F_i$ et $f_i \in F_i$. Ainsi $< f_i, f_i > = 0$ et d'après la propriété 4 du produit scalaire, cela signifie que $f_i = 0_E$. D'où $f = f_p$ ce qui signifie que f est paire. En conséquence, $F_i^{\perp} = F_p$ [3pts].

(g) Il est clair que comme $(1, X, X^2)$ est une base de E', comme $E' = F_p \oplus F_i$, alors $(1, X^2)$ est une base de F_p

(g) Il est clair que comme $(1, X, X^2)$ est une base de E', comme $E' = F_p \oplus F_i$, alors $(1, X^2)$ est une base de F_p et que (X) est une base de F_i . Donc $(X/\|X\|) = (X/\sqrt{2})$ est une base orthonormale de F_i . Et avec le procédé d'orthonormalisation de Gram-Schmidt, avec $\|1\| = 1$ et $<1, X^2 >= 0$, $\left(1, \frac{X^2 - <1, X^2 >}{\|X^2 - <1, X^2 >\|}\right) = \left(1, \frac{\sqrt{3}}{2\sqrt{2}}X^2\right)$ est une base orthonormale de F_p [2pts].

D'après (f), F_i et F_p sont orthogonaux, donc $\left(1, \frac{X}{\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}X^2\right)$ est une base orthonormale de E' [1pt]. Il est clair que les fonctions 1, X et $(X-1)^2$ sont des fonctions monotones de E'. Donc $\operatorname{Vect}(F_m) = E'$ car ces trois fonctions sont libres et génératrices dans E'. Or $F_m^{\perp} = \operatorname{Vect}(F_m)^{\perp}$ d'où $F_m^{\perp} = \{0_{E'}\}$ [2pts].

- 2. (4 points) Soit $(E, <\cdot, \cdot>)$ un espace euclidien. Soit F et G deux sous-espaces vectoriels de E tels que $F \subset G$. On note respectivement p_F et p_G les projecteurs orthogonaux sur F et G.
 - (a) Rappeler les définitions de p_F et p_G après avoir expliqué pourquoi ces projecteurs existent.
 - (b) Montrer que pour tout $x \in E$, $||p_F(x)|| \le ||p_G(x)||$.

Proof. (a) Ces projecteurs existent car la dimension de E est finie (cours) [0.5pts]. Pour tout $x \in E$, $p_F(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i$ où $(e_i)_{1 \le i \le k}$ est une base orthonormale de F [0.5pts].

(b) Si F=G, la propriété est évidente. Sinon, il est clair qu'en posant $H=F^{\perp}\cap G, G=F\oplus H$ avec $H\subset F^{\perp}$. Soit maintenant $x\in E$. On a l'unique décomposition $x=x_G+x_{G^{\perp}}$. Ainsi $p_G(x)=x_G, p_F(x)=p_F(x_G)$ car $p_F(x_{G^{\perp}})=0$ du fait que $G^{\perp}\subset F^{\perp}$. Il est clair que pour tout $x\in E, p_G(x)=x_G=p_F(x_G)+p_H(x_G)=p_F(x)+p_H(x)$ car dans G,H est l'orthogonal de F. Mais comme $H\subset F^{\perp}$, alors $p_F(x)$ et $p_H(x)$ sont orthogonaux. On peut donc appliquer le Théorème de Pythagore et ainsi $\|p_F(x)\|^2+\|p_H(x)\|^2=\|p_G(x)\|^2$, d'où $\|p_F(x)\|\leq \|p_G(x)\|$ [3pts].