Licence M.A.S.S. deuxième année 2012 – 2013 Algèbre S4

Correction du Contrôle continu n°1, février 2013

Examen de 1h30. Tout document ou calculatrice est interdit.

1. (10 points) Soit $E = \mathbf{R}^3$. Pour $a \in \mathbf{R}$, on considère l'application $\langle \cdot, \cdot \rangle_a$ telle que pour tout $x, y \in E$, avec $x = (x_1, x_2, x_3)$ et $y = (y_1, y_2, y_3)$,

$$\langle x, y \rangle_a = 2x_1y_1 + x_2y_2 + (a^2 - a + 2)x_3y_3 - a(x_2y_3 + y_2x_3) + (2 - a)(x_1y_3 + x_3y_1).$$

- (a) Soit u = (0, 1, 0) et $v = (-\frac{1}{2}, a, 1)$. Calculer $\langle u, v \rangle_a$, $\langle u, u \rangle_a$ et $\langle v, v \rangle_a$.
- (b) Montrer que pour tout $x=(x_1,x_2,x_3) \in E, \langle x,x \rangle_a=ax_1^2+(x_2-ax_3)^2+(2-a)(x_1+x_3)^2$. En déduire que $\langle \cdot,\cdot \rangle_a$ est un produit scalaire si et seulement si 0 < a < 2.
- (c) Pour 0 < a < 2, déterminer $\{u, v\}^{\perp}$ puis $\{u\}^{\perp}$.
- (d) Déterminer une base orthonormale e de E. Déterminer x le projeté orthogonal de (0,0,1) sur $\{u,v\}^{\perp}$. Quelles sont les coordonnées de x dans la base e?

Proof. (a) On a $< u, v >_a = a - a = 0, < u, u >_a = 1$ et $< v, v >_a = \frac{1}{2}$ (1pt). (b) On a $< x, x >_a = 2x_1^2 + x_2^2 + (a^2 - a + 2)x_3^2 - 2ax_2x_3 + 2(2 - a)x_1x_3 = ax_1^2 + (x_2 - ax_3)^2 + (2 - a)(x_1 + x_3)^2$ pour tout $(x_1, x_2, x_3) \in E$ (1pt).

Il est clair que $\langle x,y\rangle_a=\langle y,x\rangle_a$ et $\langle x,\lambda_1y_1+\lambda_2y_2\rangle_a=\lambda_1\langle x,y_1\rangle_a+\lambda_2\langle x,y_2\rangle_a$ (puisqu'écrit sous la forme de combinaison linéaire de x_iy_j). Il faut maintenant vérifier que $\langle x,x\rangle_a\geq 0$ ce qui implique que $a\geq 0$ et $(2-a)\geq 0$, soit $a\in [0,2]$. Enfin, si $\langle x,x\rangle_a=0$ et $a\in]0,2[$, ceci entraı̂ne $x_1=0,\,x_2=ax_3$ et $x_1+x_3=0$, soit $x=0_E$. Si a=0 ou a=2, ceci n'est plus vrai (1.5pts).

(c) Comme (u,v) forme une famille orthogonale, c'est une famille libre, donc $\dim(\operatorname{Vect}(u,v))=2$ et ainsi $\dim(\{u,v\}^{\perp})=3-2=1$. Or $(u,\sqrt{2}v)$ forme une base orthonormale de $\operatorname{Vect}(u,v)$. On en déduit que comme $w=(1,0,0)\notin \operatorname{Vect}(u,v), \ w-P_{(u,v)}(w)\in \{u,v\}^{\perp} \ \text{avec} \ P_{(u,v)}(w) \ \text{le projet\'e orthogonal de } w \ \text{sur } \operatorname{Vect}(u,v), \ \text{donc} \ w'=w-< u,w>_a u-2< v,w>_a\in \{u,v\}^{\perp}, \ \text{soit} \ w'=(1,0,0)-0\times(0,1,0)-2(1-a)(-\frac{1}{2},a,1).$ On trouve ainsi w'=(2-a,2a(a-1),2(a-1)) et $\{u,v\}^{\perp}=\operatorname{Vect}(w')$ (3pts).

Comme (u, v, w') est une famille orthogonale, on en déduit que $\{u\}^{\perp} = \text{Vect}(v, w')$ (1pt).

(d) Une base orthonormale e de E est donc: $e = (u, \sqrt{2}v, w'/\|w'\|_a)$ avec $\|w'\|_a^2 = 2a(2-a)$ (0.5pts). On en déduit que comme $\{u, v\}^{\perp} = \text{Vect}(w'), P_{(u,v)^{\perp}}((0,0,1)) = \langle w', (0,0,1) \rangle_a w'/\|w'\|_a^2$, donc $x = \frac{1}{2}w'$ (1pt).

Dans e, les coordonnées de x sont donc $(0,0,\frac{1}{2})$ (1pt).

2. (Sur 15 points) Soit $F = \mathcal{C}^2([-1,1])$, l'ensemble des fonctions continues, dérivables 2 fois et de dérivées secondes continues sur [-1,1]. On considère le produit scalaire sur F tel que pour $f,g \in F$

$$\langle f, g \rangle = f(-1)g(-1) + f(1)g(1) + \int_{-1}^{1} |x| f''(x)g''(x) dx.$$

- (a) Montrer que $\langle \cdot, \cdot \rangle$ est bien un produit scalaire (on pourra utiliser le résultat suivant: pour toute fonction $h: [-1,1] \to \mathbf{R}_+$ continue sur [-1,1], $\int_{-1}^1 h(t)dt = 0 \iff h \equiv 0$). Pour $f \in F$, on note $||f||^2 = \langle f, f \rangle$.
- (b) Déterminer, en justifiant, F^{\perp} .

- (c) Soit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ telle que pour $x\in[-1,1],\ f_n=x^n$ (et $f_0\equiv 1$). Montrer que (f_n) est une suite de F. Que peut-on dire de la dimension de F?
- (d) Déterminer $||f_0||$, $\langle f_0, f_1 \rangle$ et $||f_1||$. Plus généralement, déterminer $||f_n||$.
- (e) Soit $G = \{ f \in F, f(x) \ge 0 \text{ pour tout } x \in [-1, 1] \}$. Montrer que G n'est pas un sous-espace vectoriel de F.
- (f) Expliquer pourquoi pour $f \in F$, $\min_{x \in [-1,1]} \{f(x)\}$ existe. Montrer que pour $f \in F$, f f $\min_{x \in [-1,1]} \{ f(x) \} \in G.$
- (g) On note Vect(G) l'ensemble des combinaisons linéaires finies d'éléments de G. Montrer que Vect(G) = F. En déduire que $G^{\perp} = \{0_F\}$.

Proof. (a) Il est clair que < f, g > = < g, f >, $< f, \lambda_1 g_1 + \lambda_2 g_2 > = \lambda_1 < f, g_1 > + \lambda_2 < f, g_2 >$ et $< f, f > \geq 0$ $(0.5 \mathrm{pts})$. Il faut maintenant vérifier que < f, f> = 0 implique f = 0. D'après la propriété citée, comme $< f, f> = f^2(0) + \int_{-1}^{1} |x| (f''(x))^2 dx$, alors < f, f> = 0 entraı̂ne f(1) = f(-1) = 0 et $|x| (f''(x))^2 = 0$ pour tout $x \in [-1,1]$. La seconde relation implique que f''(x) = 0 pour tout $x \in [-1,0[\cup]0,1]$ donc sur [-1,1] car f'' est continue, ce qui signifie que f est une fonction polynomiale de degré 1 sur [-1,1]. Comme f(1)=f(-1)=0, la seule fonction polynomiale de degré 1 s'annulant 2 fois est la fonction nulle, ce qui signifie que $f = 0_F$. (2.5pts). (b) Soit g∈ F[⊥]. Cela signifie que g∈ F et que pour tout f∈ F, < f, g>= 0. En particulier cela est vrai pour f = g, donc < g, g>= 0 ce qui entraîne que g = 0_F: F[⊥] = {0_E} (1pt).
(c) Les fonctions f_n sont bien de classe C² sur [-1,1]: elles appartiennent bien à F (0.5pts). Comme la suite (f_n)

- est une famille libre (famille de polynômes de degrés croissants) et qu'elle est composée d'une infinité de fonctions,
- on en déduit que la dimension de F n'est pas finie mais infinie (1pt). (d) On a $||f_0||^2 = 2$, donc $||f_0|| = 2^{1/2}$, $< f_0$, $f_1 >= 0$ et $||f_1||^2 = 2$, donc $||f_1|| = 2^{1/2}$ (1pt). Plus généralement, pour $n \ge 1$, on a $||f_n||^2 = 2 + 2(n(n-1))^2 \int_0^1 x^{2n-3} dx = 2 + n^2(n-1)$, donc $||f_n|| = (2 + n^2(n-1))^{-1/2}$ (1pt). (e) Il est clair que si $g \in G$, avec $g \ne 0_F$, alors $-g \notin G$ donc G n'est pas un sous-espace vectoriel de F (1pt). (f) Comme f est continue sur [-1, 1], f atteint ses extrema sur cet intervalle et ainsi $\inf_{x \in [-1, 1]} f(x) = \min_{x \in [-1, 1]} f(x)$
- (0.5pts).

On sait que pour tout $t \in [-1,1], f(t) \ge \min_{x \in [-1,1]} f(x), \text{ donc } f(t) - \min_{x \in [-1,1]} f(x) \ge 0.$ De plus f - (-1,1] $\min_{x \in [-1,1]} f(x)$ appartient à F car $f \in F$ (on enlève juste une constante). Ainsi $f - \min_{x \in [-1,1]} f(x) \in G$ (1pt). (g) Il est clair que comme $G \subset F$, $\mathrm{Vect}(G) \subset F$. Montrons que $F \subset \mathrm{Vect}(G)$. Soit $f \in F$. Alors f = G $(f - \min_{x \in [-1,1]} f(x)) + \min_{x \in [-1,1]} f(x)$. Posons $g_1 = f - \min_{x \in [-1,1]} f(x)$, donc d'après la question précédente $g_1 \in G$. Ainsi, si $\min_{x \in [-1,1]} f(x) \ge 0$, $f = g_1 + g_2$ avec $g_2 = \min_{x \in [-1,1]} f(x) \in G$, et si $\min_{x \in [-1,1]} f(x) < 0$, $f=g_1-g_2$ avec $g_2=-\min_{x\in[-1,1]}f(x)\in G.$ Dans tous les cas f s'écrit comme une combinaison linéaire finie de fonctions de G (3pts).

Soit $h \in G^{\perp}$. Cela signifie que $h \in F$, donc $h = g_1 + g_2$ suivant le découpage précédent, et < h, g >= 0 pour toute fonction $g \in G$. Cela est donc vrai pour $g = g_1$ et $g = g_2$ et ainsi $\langle h, g_1 \rangle = \langle h, g_2 \rangle = 0$. On en déduit ainsi que $\langle h, g_1 + g_2 \rangle = 0$, soit $\langle h, h \rangle = 0$ et d'après la propriété 4 du produit scalaire, $h = 0_F$ (2.5pts).