Licence M.A.S.S. deuxième année 2012 - 2013Algèbre S4

Correction du contrôle continu n°2, mars 2013

Examen de 1h30. Tout document ou calculatrice est interdit.

- 1. (9 points) Soit (e_1, \dots, e_n) une base orthonormale d'un espace euclidien E de dimension n muni du produit scalaire $\langle \cdot, \cdot \rangle$.
 - (a) Montrer que les applications $f_i: x \in E \mapsto \langle x, e_i \rangle$, où $i = 1, \dots, n$ sont des formes linéaires
 - (b) Pour $i = 1, \dots, n$, déterminer $\ker(f_i)$ et sa dimension.
 - (c) Montrer que (f_1, \dots, f_n) forme une famille libre de E^* , espace dual de E.
 - (d) Montrer que (f_1, \dots, f_n) est la base duale de (e_1, \dots, e_n) .
 - (e) Soit u un endomorphisme de E de matrice $(u_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbf{R})$ dans la base (e_1, \dots, e_n) . Pour $x \in E$, déterminer u(x) en fonction des $f_i(x)$, des e_i et des u_{ij} .
 - (f) On définit sur E^* une application (\cdot,\cdot) telle que pour $f,g\in E^*$, $(f,g)=\sum_{i=1}^n f(e_i)g(e_i)$. Montrer que (\cdot, \cdot) est un produit scalaire sur E^* .
 - (g) Montrer que (f_1, \dots, f_n) est une base orthonormale de E^* pour le produit scalaire (\cdot, \cdot) .

Proof. (a) Il est clair que les f_i sont à valeurs dans \mathbf{R} et $f_i(\lambda_1 x_1 + \lambda_2 x_2) = \langle e_i, \lambda_1 x_1 + \lambda_2 x_2 \rangle = \lambda_1 \langle e_i, x_1 \rangle$ $+\lambda_2 < e_i, x_2 > \text{en raison de la distributivit\'e du produit scalaire et ainsi } f_i(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 f_i(x_1) + \lambda_2 f_i(x_2) : f_i(x_2) : f_i(x_1) + \lambda_2 f_i(x_2) : f_i(x_2) : f_i(x_2) + \lambda_2 f_i(x_2) : f_i(x_2)$ est une forme linéaire sur E (1pt).

- (b) $\ker(f_i) = \{e_i\}^{\perp}$, hyperplan de dimension n-1 (1pt).
- (c) On suppose que $\sum_{i=1}^{n} \alpha_i f_i = 0$ avec $(\alpha_i) \in \mathbf{R}^n$. On a donc $\sum_{i=1}^{n} \alpha_i < x, e_i >= 0$ pour tout $x \in E$. En appliquant cette relation à $x = e_j$ pour $j = 1, \dots, n$, on obtient $\alpha_j = 0$ car les (e_i) forment une base orthonormale. Donc (f_1, \dots, f_n) est une famille libre de E^* (1pt).
- (d) On a $f_i(e_j) = \delta_{ij}$ pour tout $i, j \in \{1, \dots, n\}$, donc c'est bien la base duale **(0.5pts)**. (f) On a $u(e_j) = \sum_{i=1}^n u_{ij}e_i$ pour tout $j \in \{1, \dots, n\}$. Or $x = \sum_{j=1}^n f_j(x)e_j$. Donc comme u est un endomorphisme, $u(x) = u\left(\sum_{j=1}^n f_j(x)e_j\right) = \sum_{j=1}^n f_j(x)u(e_j) = \sum_{i=1}^n \sum_{j=1}^n u_{ij}f_j(x)e_i$ **(1.5pt)**.
- (g) Il est clair que (f,g) = (g,f) et que $(f,\lambda_1g_1 + \lambda_2g_2) = \lambda_1(f,g_1) + \lambda_2(f,g_2)$. Ensuite, $(f,f) = \sum_{i=1}^n f^2(e_i)$ donc $(f,f) \ge 0$ (0.5pts). Enfin si (f,f) = 0 alors $f(e_i) = 0$ pour tout $i = 1, \dots, n$, donc si $x \in E$, alors il existe un unique n-uplet $(\alpha_1, \dots, \alpha_n)$ tel que $x = \sum_{i=1}^n \alpha_i e_i$, donc $f(x) = \sum_{i=1}^n \alpha_i f(e_i) = 0$. Ainsi $f = 0_{E^*}$ (2pts). (h) On a $(f_i f_i) = \sum_{j=1}^n f_i(e_j) f_i(e_j) = f_i^2(e_i) = 1$ et pour $i \ne j$, $(f_i, f_j) = 0$: (f_1, \dots, f_n) est bien une famille
- orthonormale de E^* (0.5pts). Mais comme $\dim(E^*) = \dim(E) = n$, on en déduit que (f_1, \dots, f_n) est une famille libre de n vecteur dans un espace de dimension n; c'est donc une bon de E^* (1pt).
- 2. (17 points) Soit E l'ensemble des fonctions périodiques $f: \mathbf{Z} \mapsto f(x) \in \mathbf{R}$ de période $T \in \mathbf{N}$ avec $T \geq 2$, c'est-à-dire que pour tout $x \in \mathbf{Z}$, f(x+T) = f(x).
 - (a) Montrer que si $f \in E$, pour tout $x \in \mathbf{Z}$ et $k \in \mathbf{N}$ et f(x + kT) = f(x). Etendre cette propriété à $k \in \mathbf{Z}$.
 - (b) Montrer que la fonction s telle que $s(x) = \sin(\frac{2\pi}{T}x)$ pour $x \in \mathbb{Z}$ appartient à E.

- (c) Soit $i \in \{1, \dots, T\}$ et soit la fonction h_i vérifiant $h_i(x) = 1$ s'il existe $k \in \mathbb{Z}$ tel que x = i + kTet $h_i(x) = 0$ sinon. Montrer que pour tout $i \in \{1, \dots, T\}, h_i \in E$.
- (d) Montrer que E est un espace vectoriel.
- (e) Pour $f \in E$, montrer que $f = \sum_{i=1}^{T} f(i)h_i$.
- (f) Soit l'application $\langle \cdot, \cdot \rangle$ telle que pour $f, g \in E, \langle f, g \rangle = \sum_{i=1}^{T} f(i)g(i)$. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- (g) Montrer que la famille (h_1, \dots, h_T) est une base orthonormale de E.
- (h) Montrer sans calcul qu'il existe une unique fonction $f_0 \in E$ telle que pour tout $f \in E$, $\sum_{i=1}^{T} f(i) = \langle f, f_0 \rangle$. Que vaut f_0 ?
- (i) Soit $F = \{ f \in E, \sum_{i=1}^{T} f(i) = 0 \}$. En vous servant de la question précédente, montrer que F est un sous-espace vectoriel de E, dont on précisera la dimension et déterminer F^{\perp} .
- (i) Montrer que $s \in F$ (on pourra utiliser les exponentielles complexes).
- (k) Pour $f \in E$, déterminer la projection orthogonale de f sur F.
- Proof. (a) On montre la propriété par récurrence: vrai trivialement pour k=0. Si vrai au rang k, alors f(t+kT)=f(t). Mais f((t+kT)+T)=f(t+kT) d'après la définition de la périodicité, donc f(t+(k+1)T)=f(t) et la propriété est vraie pour tout $k \in \mathbb{N}$ (1pt).
- On a f(t+kT)=f(t) pour tout $t\in \mathbf{Z}$ et tout $k\in \mathbf{N}$. Prenons t'=t+kT. Alors f(t')=f(t'-kT) pour tout $t \in \mathbf{Z}$, donc tout $t' \in \mathbf{Z}$ (1pt).
- (b) On a pour tout $x \in \mathbf{Z}$, $s(x+T) = \sin(\frac{2\pi}{T}(x+T)) = \sin(\frac{2\pi}{T}x + 2\pi T) = s(x)$ (0.5pts).
- (c) Soit $i \in \{1, \dots, T\}$. Pour $x \in Z$, on a $h_i(x) = 1$ si x = i + kT, donc si x = i + T, et ainsi $h_i(x) = h_i(x + T) = 1$. Sinon, $h_i(x) = 0$ et comme alors $x + T \neq i + kT$, alors $h_i(x + T) = 0 = h_i(x)$. Dans tous les cas on a bien $h_i \in E$ (0.5pts).
- (d) Montrons que E est un sous-espace vectoriel de F ensemble des fonctions $f: \mathbf{Z} \to \mathbf{R}$, qui est un espace-vectoriel. Soit $f_1, f_2 \in E$, et $\lambda_1, \lambda_2 \in \mathbf{R}$. Alors pour tout $x \in \mathbf{Z}$, $(\lambda_1 f_1 + \lambda_2 f_2)(x+T) = \lambda_1 f_1(x+T) + \lambda_2 f_2(x+T) = \lambda_1 f_1(x+T) + \lambda_2 f_2(x+T$ $\lambda_1 f_1(x) + \lambda_2 f_2(x)$, donc $\lambda_1 f_1 + \lambda_2 f_2 \in E$. Ainsi E est bien un sev donc un ev (1pt).
- (e) Soit $f \in E$. Pour tout $i \in \{1, \dots, T\}$, $f(i) = \sum_{j=1}^{T} f(j)h_j(i) = f(i)h_i(i)$, donc la formule est vraie pour $x \in \{1, \dots, T\}$. Pour x = i + kT avec $k \in \mathbf{Z}$, on a clairement f(x) = f(i) car $f \in E$. Mais comme les h_j appartienment à E, on a également $h_j(x) = h_j(i)$, donc $\sum_{j=1}^{T} f(j)h_j(i) = f(i)$, soit encore $f(x) = \sum_{j=1}^{T} f(j)h_j(x)$ (1.5pt).
- (f) La symétrie est claire (liée à la commutativité de la multiplication dans R). Pour la distributivité, on a bien $< f, \lambda_1 g_1 + \lambda_2 g_2 >= \lambda_1 < f, g_1 > +\lambda_2 < f, g_2 >$. Pour la positivité, $< f, f >= \sum_{i=1}^T f^2(i) \ge 0$ (0.5pts). Enfin, si < f, f >= 0 alors f(i) = 0 pour tout $i \in \{1, \dots, T\}$. D'après la question (f), on en déduit que $f = 0_E$. Donc $<\cdot,\cdot>$ est bien un produit scalaire sur E (1pt).
- (g) On a $< h_i, h_i >= h_i^2(i) = 1$. De plus pour $i \neq j, < h_i, h_j >= \sum_{k=1}^T h_i(k)h_j(k) = 0$. Donc (h_1, \dots, h_T) est bien une famille orthonormale **(0.5pts)**. De plus d'après la question (f), (h_1, \dots, h_T) est une famille génératrice de E. C'est donc bien une base orthonormale de E (1.5pts).
- (h) On montre d'abord que l'application $u: f \mapsto \sum_{i=1}^{T} f(i)$ est une forme linéaire sur E. En effet, les valeurs prises sont bien dans **R**. De plus, il est clair que $u(\lambda_1 f_1 + \lambda_2 f_2) = sum_{i=1}^T (\lambda_1 f_1 + \lambda_2 f_2)(i) = \lambda_1 u(f_1) + \lambda_2 u(f_2)$. D'après le théorème de représentation de Riecsz, on sait que comme E est euclidien (de dimension T), il existe un unique vecteur f_0 tel que $\langle f, f_0 \rangle = u(f)$ pour tout $f \in E$ (1.5pts). On remarque que l'application f_0 telle que $f_0(x) = 1$ pour tout $x \in \mathbf{Z}$ vérifie bien cette égalité (0.5pts).
- (i) F est le noyau de u donc F est un hyperplan (car u non nulle) donc un sev de E (0.5pts) et dim(F) = T 1
- Comme $u(f) = \langle f, f_0 \rangle$, $F = \{f \in E, \langle f, f_0 \rangle\} = \{f_0\}^{\perp}$ et on en déduit que $F^{\perp} = Vect(f_0)$ (1pt). (j) On doit montrer que $\sum_{j=1}^{T} s(j) = 0$. Or $s(j) = \mathcal{I}m(e^{2i\pi j/T})$ donc $\sum_{j=1}^{T} s(j) = 0 = \mathcal{I}m(\sum_{j=1}^{T} e^{2i\pi j/T}) = \mathcal{I}m(e^{2i\pi/T}(1 e^{2i\pi T/T})(1 e^{2i\pi/T}))$ avec la formule de la somme d'une suite géométrique. Or $(1 e^{2i\pi T/T}) = 0$ donc $\sum_{j=1}^{T} s(j) = 0$ et $s \in F$ (2pts).
- (k) Pour tout $x \in E$, on a $P_F(f) = f P_{F^{\perp}}(f)$. Mais comme $F^{\perp} = Vect(f_0)$ une base de F^{\perp} est $f_0/\sqrt{\langle f_0, f_0 \rangle} = f_0/\sqrt{T}$. Ainsi $P_{F^{\perp}}(f) = \frac{1}{T} \langle f, f_0 \rangle = (\frac{1}{T} \sum_{k=1}^T f(k)) f_0$ et $P_F(f) = f (\frac{1}{T} \sum_{k=1}^T f(k)) f_0$ (2pts).