Licence M.A.S.S. deuxième année 2009 – 2010

Analyse S4

Contrôle continu n°2, mai 2010

Examen de 1h30. Tout document ou calculatrice est interdit.

- 1. (Sur 12 points) Par le biais de convergence d'intégrales, on peut montrer le théorème de la limite centrale pour des échantillons gaussiens...
 - (a) Montrer que $I_n = \int_{-\infty}^{\infty} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}} dx$ existe pour tout $n \in \mathbb{N}^*$.
 - (b) On pose $g_n(x) = (1 + \frac{x^2}{n})^{-\frac{n+1}{2}} \times \mathbb{I}_{[-\sqrt{n},\sqrt{n}]}(x)$ avec $\mathbb{I}_A(x) = 1$ si $x \in A$ et $\mathbb{I}_A(x) = 0$ sinon. Montrer que $J_n = \int_{-\infty}^{\infty} g_n(x) dx$ existe pour tout $n \in \mathbb{N}^*$.
 - (c) Montrer que pour $0 \le u \le 1$, $\ln(1+u) \ge \frac{u}{2}$.
 - (d) Montrer que $\int_{-\infty}^{\infty} \exp\left(-\frac{1}{4}x^2\right) dx$ converge.
 - (e) En déduire $J = \lim_{n \to \infty} J_n$ existe et on exprimera J sous forme d'une intégrale.
 - (f) En déduire également que $\lim_{n\to\infty} I_n = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx$ (on pourra utiliser un changement de variable).
- 2. (Sur 11 points) On considère la fonction F où

$$F(x) = \int_0^{\pi/2} \frac{\tan(x \ t)}{t} dt.$$

- (a) Montrer F est définie sur D =]-1,1[.
- (b) Montrer que F est une fonction impaire sur D.
- (c) Montrer que F est continue sur D.
- (d) Montrer que F est de classe \mathcal{C}^1 sur D et donner l'expression de F'(x).
- (e) Calculer explicitement F'(x) et déterminer $\lim_{x\to 1} F'(x)$.