Licence M.A.S.S. deuxième année 2009 – 2010

Correction d'exercices de la feuille n^o 3:

Intégrales dépendant d'un paramètre

(1) (*) Montrer que $I_n = \int_0^\infty \frac{e^{-x}}{\frac{1}{1+\sqrt{x}}} dx$ existe pour tout $n \in \mathbb{N}$. Expliciter la limite ℓ de $(I_n)_n$.

Proof. Soit $f_n:[0,1]\to\mathbb{R};\ f_n(x)=\frac{1}{(x^2+1)^n}$. Alors $\forall n\geq 0\ f_n\in C^0([0,1])$ donc I_n existe. Ce qui prouve que la suite numérique $(I_n)_n$ est bien définie

Pour la suite on cherche à intervertir limite et intégrale. On ne peut pas appliquer la convergence monotone du cours

car la suite n'est pas croissante : Soit $x_0 \in [0,1]$ alors $(x_0^2+1)^{n+1} \ge (x_0^2+1)^n$, d'où $f_{n+1} \le f_n$. En revanche $f_n \le 1$, or $\int_0^1 1 dx < \infty$. De plus, soit $f = \lim_{n \to \infty} f_n$ alors: Pour x > 0 $\lim_{n \to \infty} f_n(x) = 0$ et $\lim_{n \to \infty} f_n(0) = 1$.

f est C^0 par morceaux, on peut appliquer la convergence dominée:

$$\lim_{n\to\infty}I_n=\lim_{n\to\infty}\int_0^1f_n(x)dx=\int_0^1(\lim_{n\to\infty}f_n(x))dx=\int_0^1f(x)dx=0$$

Soit $f_n:[0,1]\to\mathbb{R};\ f_n(x)=(1+\frac{x^2}{n})^{1/n}$. Alors $\forall n\geq 0\ f_n\in C^0([0,1])$ donc I_n existe. Ce qui prouve que la suite

numérique $(I_n)_n$ est bien définie.

Pour la suite on cherche à intervertir limite et intégrale. Appliquons cette fois la convergence dominée.

Comme $x \in [0,1]$ $|f_n(x)| \le 2 = g(t)$. Or $\int_0^1 g(t)dt < \infty$. De plus, soit $f = \lim_{n \to \infty} f_n$ alors: Pour $x \in [0,1]$ $\lim_{n \to \infty} f_n(x) = 1$ f est C^0 par morceaux, on peut appliquer la

$$\lim_{n \to \infty} I_n = \lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 (\lim_{n \to \infty} f_n(x)) dx = \int_0^1 f(x) dx = 1.$$

(3) (**) Déterminer, si elle existe, $\lim_{n\to\infty} \int_0^\infty \frac{\cos(nx)}{\sqrt{x}} dx$.

Proof. La limite n'existe pas car $f_n(x) = \frac{\cos(nx)}{\sqrt{x}}$ n'admet pas de limite lorsque n tend vers l'infini (sauf pour quelques points particuliers). Par exemple $a_n = cos(\sqrt{2}n)$ n'admet pas de limite, donc $f_n(\sqrt{2}$ non plus En revanche le problème de la définition de la suite est intéressant:

Soit
$$I_n = \int_0^\infty \frac{\cos(nx)}{\sqrt{x}} dx$$

Il y a a priori deux problèmes : en 0 et en ∞ . En 0 $\cos(nx) \sim_0 1$, or on sait que $\int_0^1 \frac{1}{\sqrt{x}} dx$ est finie donc par le théorème de comparaison on règle le problème en 0. En ∞ on montre la convergence grâce au théorème d'intégration par parties : on pose $u(t) = \frac{1}{\sqrt{t}}$ et $v'(t) = \cos(nt)$. Donc $u'(t) = \frac{-1}{2t^{\frac{3}{2}}}$ et $v(t) = \frac{\sin(nt)}{n}$. On a $\lim_{t\to\infty} \frac{\sin(nt)}{n\sqrt{t}} = 0$, ce qui prouve que $\int_1^\infty \frac{\cos(nx)}{\sqrt{x}} dx$ et $\int_1^\infty \frac{\sin(nt)}{2nt^{\frac{3}{2}}} dt$ ont même nature. Elles sont convergentes par Riemann. Donc I_n

est bien définie (Ouf!).

(4) (**) Soit la suite $(I_n)_{n\in\mathbb{N}}$ avec $I_n = \int_1^\infty \frac{1}{x^n\sqrt{x^2+1}} dx$. Montrer que I_n existe pour tout $n\in\mathbb{N}$ et étudier la convergence de $(I_n)_{n\in\mathbb{N}}$.

Proof. Soit $I_n = \int_1^\infty \frac{dx}{x^n \sqrt{x^2 + 1}}$, et $f_n(x) = \frac{1}{x^n \sqrt{x^2 + 1}}$. La question de la définition se ramène simplement au problème en ∞ . En effet les f_n sont localement intégrables sur $[1, \infty]$. Tout d'abord I_0 n'existe pas, en effet : $\frac{1}{\sqrt{x^2 + 1}} \sim_\infty \frac{1}{x}$, qui n'est pas intégrable sur le domaine (Riemann). Par le théorème de comparaison I_0 diverge.

Soit $n \in \mathbb{N}$ $n \ge 1$, par le même argument $f_n(x) \sim_{\infty} \frac{1}{x^n x} = \frac{1}{x^{n+1}}$. Par Riemann + le théorème de comparaison I_n

On majore les f_n par $g(t) = \frac{1}{t^{3/2}}$, qui est bien intégrable sur le domaine. On a $f = \lim_{n \to \infty} f_n$ alors: Pour x > 1 $\lim_{n\to\infty} f_n(x) = 0$ et $\lim_{n\to\infty} f_n(0) = \frac{1}{\sqrt{2}}$. On peut donc appliquer la convergence dominée il vient l=0.

(5) (**) Soit $f: \mathbb{R} \to \mathbb{R}$ une application dérivable et bornée sur \mathbb{R} . Après avoir montré son existence, calcular $\lim_{n\to\infty}\int_0^\infty e^{-nx}f(x)dx$.

Proof. f est bornée donc $|f(x)e^{-nx}| \leq ||f||_{\infty}e^{-nx}$. Or $I_n = \int_0^{\infty} f(x)e^{-nx} dx \leq \int_0^{\infty} ||f||_{\infty}e^{-nx} = ||f||_{\infty} \int_0^{\infty} e^{-nx} existe pour tout <math>n \geq 1$. On peut appliquer la convergence dominée à $g_n(x) = e^{-nx}$. En effet $g_n \leq e^{-x}$. Donc $l = \lim_{n \to \infty} I_n = \int_0^{\infty} \lim_{n \to \infty} f(x)e^{-nx} dx$. Pour la calculer il nous faut maintenant effectuer le changement de variable $\phi(x) = \frac{x}{n}$. C'est bien un changement admissible...

D'où
$$l = \int_0^\infty \lim_{n \to \infty} e^{-x} f(\frac{x}{n}) \frac{1}{n} dx = f(0) \int_0^\infty \lim_{n \to \infty} \frac{e^{-x}}{n} dx = 0.$$

(9) (**) Mêmes questions mais avec $f(x) = \int_1^2 \frac{\cos(xt)}{t^2} dt$.

Proof. $F(x) = \int_1^2 \frac{\cos(xt)}{t^2} dt.$ Pour tout $x \in \mathbb{R}$, l'intégrale converge (comme une intégrale de fonction continue) et donc F est définie. Soit $f(x,t)=\frac{\cos(xt}{t^2}$. On a : $|f(x,t)|\leq \frac{1}{t^2}\ \forall x\in\mathbb{R}$, de plus $\int_1^2\frac{1}{t^2}dt$ est finie. Donc d'après le théorème 3.2 F est continue sur \mathbb{R} . Pour la dérivabilité il nous faut maintenant "controler la dérivée" : $\left|\frac{\partial f(x,t)}{\partial x}\right| = \left|\frac{-\sin(xt)}{t}\right| \le 1 \forall x \in \mathbb{R} \text{ car } t \in [1,2].$ Qui est intégrable sur le domaine. On applique donc le théorème 3.3 p11. Donc tous les domaines demandés sont donc égaux à \mathbb{R} .

(10) (**) Donner le domaine de définition, de continuité et dérivabilité de la fonction $f(x) = \int_0^1 \frac{\sin(xt)}{t} dt$. En déduire que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Proof. Soit $f(x) = \frac{\sin(xt)}{t}$ qui est prolongeable par continuité en 0 et vaut x (si ce n'est pas clair faites un DL de sin(xt)). Comme $\mathbb R$ n'est pas borné on ne peut majorer f et donc appliquer directement le théomème 3.3. On applique donc le corollaire 2 p12, $\frac{\partial}{\partial t} \frac{sin(xt)}{t} = cos(xt)$, qui est continue sur $\mathbb Rx[0,1]$. Donc la fonction $F(x) = \int_0^1 f(x)dx$ est $C^1(\mathbb R)$. On réitère, les $\frac{\partial^n sin(xt)}{\partial t^n}$ sont les la forme P(t)cos(xt) ou P(t)sin(xt), dans tous les cas continues. On montre ainsi le caractère $C^\infty(\mathbb R)$.

(12) (***) Soit $0 < \alpha < \beta$. Montrer que la fonction $f(t) = (e^{-\beta t} - e^{-\alpha t})t^{-1}$ est intégrable sur \mathbb{R}_+ . Après avoir posé $g: (x,t) = (e^{-xt} - e^{-t})t^{-1}$, montrer l'existence et calculer $\int_0^\infty \frac{\partial g}{\partial x}(x,t)dt$ pour $x \ge 1$, puis en posant $x = \beta/\alpha$, déterminer $\int_0^\infty f(t)dt$.

Proof. Montrons que $\int_0^\infty f(t)dt$ existe. Il y a des problèmes de convergence en 0 et en ∞ . En 0, $e^{-\beta t} - e^{-\alpha t} \sim$ $(1-\beta t)-(1-\alpha t)\sim (\alpha-\beta)t$, donc f est prolongeable par continuité en 0, donc intégrable en 0. En $+\infty$, $e^{-\beta t}-e^{-\alpha t}\sim -e^{-\alpha t}$ car $\beta>\alpha>0$, donc $f(t)\sim -e^{-\alpha t}t^{-1}$. En conséquence, pour t suffisamment grand, $f(t)\leq t^{-2}$, donc d'après le Théorème de comparaison f est intégrable en $+\infty$ (car t^{-2} l'est).

La fonction g est continue sur $[1,\infty] \times]0,\infty[$ comme somme et fraction de fonctions continues sur $[1,\infty] \times]0,\infty[$. On sait que pour $u \geq 0, 1-u \leq e^{-u}$. Ainsi, pour tout $1 \leq x \leq m$ et $t \in [0,1], |g(x,t)| = (e^{-t}-e^{-xt})t^{-1} \leq (1-(1-xt))t^{-1} \leq m$. Pour $t \geq 1, |g(x,t)| = (e^{-t}-e^{-xt})t^{-1} \leq e^{-t}t^{-1}$. Posons $h(t) = m\mathbb{I}_{0 < t \leq 1} + e^{-t}t^{-1}\mathbb{I}_{t > 1}$. Alors on a bien $|g(x,t)| \leq h(t)$ et $\int_0^\infty h(t)$ existe. Done grâce au Théorème de continuité des intégrales dépendant d'un paramètre $x \mapsto \int_0^\infty g(x,t)dt$ est continue sur [1,m] pour tout $m \geq 1$, donc elle est continue sur $[1,\infty[$. Pour la dérivation, il faut dériver g par rapport à x et on obtient $\frac{\partial}{\partial x}g(x,t) = -e^{-xt}$ pour tout $x \geq 1$ et t > 0. Mais $\left|\frac{\partial}{\partial x}g(x,t)\right| \leq e^{-t}$ pour tout $x \geq 1$ avec $\int_0^\infty e^{-t}dt$ qui existe, donc grâce au Théorème de dérivation des intégrales dépendant d'un paramètre, on arrive bien à montrer que $x\mapsto \int_0^\infty g(x,t)dt$ est dérivable sur $[1,\infty[$ et $\int_0^\infty \frac{\partial g}{\partial x}(x,t)dt=-\int_0^\infty e^{-xt}dt=-\frac{1}{x}$ pour $x\ge 1$. Aussi $\int_0^\infty g(x,t)dt=-\ln x$ donc avec $x=\beta/\alpha$ et le changement de variable $t'=t/\alpha$, $\int_0^\infty g(\beta/\alpha,t)dt=\int_0^\infty f(t)dt=\ln \alpha-\ln \beta$.

(13) (**) Soit $f(x) = \int_0^1 e^{-tx} \ln(t) dt$. Quel est l'ensemble de définition, de continuité et de dérivabilité de f? Déterminer $\lim_{x\to+\infty} f(x)$. Sur quel ensemble la fonction f est-elle de classe \mathcal{C}^1 ? Trouver une équation différentielle vérifiée par f et en déduire l'expression de f.

Proof. L'intégrale $\int_0^1 e^{-tx} \ln(t) dt$ pose un problème de convergence uniquement en 0. Mais en 0, pour tout $x \in \mathbb{R}$, $e^{-tx}\ln(t) \sim \ln t$ et $\int_0^1 \ln t dt$ existe. Donc d'après le Théorème de comparaison, f existe pour tout $x \in \mathbb{R}$.

Il est clair que la fonction $(x,t)\mapsto e^{-tx}\ln{(t)}$ est de classe \mathcal{C}^{∞} sur $\mathbb{R}\times]0,1]$. De plus pour tout $m\in\mathbb{R}$ et pour tout $x \ge m$, $|e^{-tx}\ln(t)| \le e^{-tm}\ln t$ pour tout $t \in]0,1]$ et $\int_0^1 e^{-tm}\ln t$ existe. On en déduit grâce au Théorème de continuité des intégrales dépendant d'un paramètre que f est continue sur $[m, \infty[$, donc sur \mathbb{R} . On peut dériver par rapport à x la fonction $f(x,t) = e^{-tx} \ln(t)$ et on a $\frac{\partial}{\partial x} f(x,t) = -te^{-tx} \ln(t)$. Il est encore possible de majorer $\frac{\partial}{\partial x} f(x,t)$ par la fonction $e^{-tm}\ln t$ pour tout $x \ge m$ et $t \in]0,1]$, fonction intégrable sur]0,1] et ainsi grâce au Théorème de dérivation des intégrales dépendant d'un paramètre, f est dérivable sur $[m,\infty[$, donc sur ${\mathbb R}.$ On obtient de même que f est de classe C^1 sur \mathbb{R} .

La dérivée de $t \ln t$ est $1 + \ln t$ et une primitive (en t) de e^{-tx} est $-e^{-tx}/x$, donc on peut faire une intégration par parties $de \ f'(x) = -\int_0^1 t e^{-tx} \ln t dt \ et \ on \ obtient \ f'(x) = -[-t \ln t e^{-tx}/x]_0^1 - \int_0^1 (1+\ln t) e^{-tx}/x dt = [e^{-tx}/x^2]_0^1 - f(x)/x = -[-t \ln t e^{-tx}/x]_0^1 - \int_0^1 (1+\ln t) e^{-tx}/x dt = [e^{-tx}/x^2]_0^1 - f(x)/x = -[-t \ln t e^{-tx}/x]_0^1 - \int_0^1 (1+\ln t) e^{-tx}/x dt = [e^{-tx}/x^2]_0^1 - f(x)/x = -[-t \ln t e^{-tx}/x]_0^1 - \int_0^1 (1+\ln t) e^{-tx}/x dt = [e^{-tx}/x^2]_0^1 - f(x)/x = -[-t \ln t e^{-tx}/x]_0^1 - \int_0^1 (1+\ln t) e^{-tx}/x dt = [e^{-tx}/x^2]_0^1 - f(x)/x = -[-t \ln t e^{-tx}/x]_0^1 - f(x)/x = -[-t \ln t e^{-tx}$ $(e^{-x}-1)/x^2-f(x)/x$. Ainsi f est bien solution d'une équation différentielle.

On résoud cette équation en trouvant d'abord les solutions de l'équation homogène soit f'(x) + f(x)/x = 0, ce qui implique que $f(x) = \frac{C}{x^2}$ pour tout $C \in \mathbb{R}$ et $x \in]-\infty, 0[$ ou $]0, \infty[$.

(15) (***) Pour tout $\rho \in \mathbb{R}$ tel que $|\rho| \neq 1$, on pose $I(\rho) = \int_0^{\pi} \ln{(1 - 2\rho\cos{\theta} + \rho^2)}d\theta$. A l'aide de changements de variables, calculer $I(-\rho)$ et $I(1/\rho)$ en fonction de $I(\rho)$. Montrer que $I(\rho^2) = 2I(\rho)$ et en déduire pour tout $\rho \in]-1,1[$ que $I(\rho)=0$, puis l'expression de $I(\rho)$ pour $|\rho|>1$.

 $Proof. \ \ \text{Dès que } |\rho| \neq 1 \ \text{alors} \ I(\rho) \ \text{existe. En effet, } 1 - 2\rho\cos\theta + \rho^2 = (\rho - \cos\theta)^2 + \sin^2\theta, \ \text{donc} \ 1 - 2\rho\cos\theta + \rho^2 > 0$ pour tout $\theta \in [0, \pi]$: l'intégrale n'est donc jamais impropre.

Avec $t = \pi - \theta$ alors $dt = -d\theta$, et $I(\rho) = \int_0^{\pi} \ln{(1 - 2\rho \cos(\pi - t) + \rho^2)} dt = I(-\rho)$. De plus, $I(1/\rho) = \int_0^{\pi} \ln{((\rho^2 + t)^2)} dt$ $2\rho\cos\theta + 1)/\rho^2$) $d\theta = I(\rho) - 2\pi\ln|\rho|$ dès que $\rho \neq 0$.

Comme les intégrales sont absolument convergentes, $I(\rho) + I(-\rho) = \int_0^\pi \ln\left((1+\rho^2)^2 - 4\rho^2\cos^2\theta\right)d\theta = \int_0^\pi \ln\left(1+\rho^4 - 2\rho^2\cos(2\theta)\right)d\theta = \frac{1}{2}\int_0^{2\pi}(1+\rho^4 - 2\rho^2\cos\theta')d\theta'$ avec $\theta' = 2\theta$. En découpant $\int_0^{2\pi} = \int_0^\pi + \int_{\pi}^{2\pi}$ et avec un changement de variable $\theta'' = 2\pi - \theta'$, $\int_{\pi}^{2\pi} = \int_0^\pi$. En conclusion, $\int_0^\pi \ln\left(1+\rho^4 - 2\rho^2\cos(2\theta)\right)d\theta = I(\rho^2)$, et comme $I(\rho) = I(-\rho)$, on a bien $I(\rho^2) = 2I(\rho)$.

Pour tout $\rho \in]-1,1[$ et tout $n \in \mathbb{N}^*$, $I(\rho^{2n}) = 2^n I(\rho)$. On aimerait passer à la limite et ainsi considérer $\lim_{n\to\infty} I(\rho^{2n})$. On va montrer que I est continue sur]-1,1[. La fonction $(\rho,\theta)\mapsto \ln{(1-2\rho\cos{\theta}+\rho^2)}$ est continue sur $]-1,1[\times[0,\pi]]$. De plus pour tout $|\rho|<1,1-2\rho\cos{\theta}+\rho^2=(1-\rho\cos{\theta})^2+\sin^2{\theta}\in[\sin^2{\theta},2+2|\cos{\theta}|]$ pour tout $\theta\in[0,\pi]$. Donc $\left|\ln\left(1-2\rho\cos\theta+\rho^2\right)\right|\leq \max\left(2|\ln\left(\sin\theta\right)|,\ln\left(2+2|\cos\theta|\right)\right)=g(\theta) \text{ pour } \theta\in]0,\pi[.\text{ Mais il est clair que } \int_0^\pi\ln\left(2+2|\cos\theta|d\theta\right)]$ comme intégrale définie, et si $\int_0^\pi |\ln{(\sin{\theta})}| d\theta$ est une intégrale impropre, elle a des problèmes de convergence en 0 et en π , mais en 0 par exemple, $|\ln (\sin \theta)| \sim -\ln \theta$ et $\ln \theta$ est intégrable en 0; $\int_0^\pi g(\theta) d\theta$ existe. Par suite, I est bien continue sur] -1,1[. En conséquence pour tout $|\rho|<1$, $\lim_{n\to\infty}I(\rho^{2n})=I(0)$ et donc $I(\rho)=\lim_{n\to\infty}2^{-n}I(\rho^{2n})=0$. Enfin comme $I(\rho) = I(1/\rho) - 2\pi \ln |\rho|$ pour $|\rho| > 1$, on en déduit qu'alors $I(1/\rho) = 0$ et donc $I(\rho) = -2\pi \ln |\rho|$ (on s'aperçoit d'ailleurs que I est continue en ± 1).

(16) (***) On pose $F(x) = \int_0^x \frac{\sin t}{t} e^{-tx} dt$ pour tout $x \in \mathbb{R}_+$. Montrer que F est dérivable sur \mathbb{R}_+ et calculer F'(x). En déduire $\int_0^\infty \frac{\sin t}{t} dt$.

Proof. L'intégrale $\int_0^\infty \frac{\sin t}{t} e^{-tx} dt$ a un problème de convergence en 0 et en ∞ . Mais comme $\sin t/t$ est prolongeable par continuité en 0, il n'y a en fait pas de problème de convergence en 0, et ceci pour tout $x \in \mathbb{R}_+$. En $+\infty$, pour tout x > 0, $\left| \frac{\sin t}{t} e^{-tx} \right| \le e^{-tx}$ et $\int_0^\infty e^{-tx} dt$ existe donc d'après le Théorème de comparaison, F existe. De plus, pour x = 0, $\int_1^\infty \frac{\sin t}{t} dt$ existe (on peut faire une intégration par parties), donc F existe pour $x \in \mathbb{R}_+$.

Soit $f(x,t) = \frac{\sin t}{t}e^{-tx}$. Alors f est de classe \mathcal{C}^1 sur $\mathbb{R}_+ \times]0, \infty[$ comme produit de fonctions de classe \mathcal{C}^1 sur le même ensemble. De plus, pour tout a>0 et $x\geq a, |f(x,t)|\leq e^{-at}$ avec $\int_0^\infty e^{-at}dt$ qui existe et $\frac{\partial}{\partial x}f(x,t)=-\sin t e^{-tx}$ vérifie $\left|\frac{\partial}{\partial x}f(x,t)\right| \leq e^{-at}$ également. Donc F est de classe \mathcal{C}^1 sur $[a,\infty[$ pour tout a>0, ce qui signifie que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* avec $F'(x)=-\int_0^\infty \sin t e^{-tx} dt$. En 0, il est clair que $F(0)=\int_0^\infty \frac{\sin t}{t} dt$. Pour montrer la continuité de F en 0, on ne peut pas utiliser le Théorème

de convergence dominée car F est une intégrale semi-convergente en 0. Soit $\phi(A) = \int_0^A \frac{\sin t}{t} dt$ pour A > 0. Alors pour tout $x \ge 0$, par intégration par parties, $\int_0^A f(x,t) dt = e^{-xA}\phi(A) + x \int_0^A \phi(y) e^{-xy} dy$. Comme ϕ est bornée, pour x > 0, on peut passer à la limite $A \to \infty$, alors $F(x) = \int_0^\infty \frac{\sin t}{t} dt + x \int_0^\infty \phi(y) e^{-xy} dy$. Par changement de variable, z = xy, on obtient que $x \int_0^\infty \phi(y) e^{-xy} dy = \int_0^\infty \phi(z/x) e^{-z} dz$. On peut alors prolonger la fonction $x \mapsto \phi(z/x)$ définie sur $|0,\infty|$ par une fonction $a(x,z) = \phi(z/x)$ pour x > 0 et $a(0,z) = \lim_{x \to \infty} \phi(x)$ pour tout z > 0. Il nous revient sur $]0,\infty]$ par une fonction $g(x,z)=\phi(z/x)$ pour x>0 et $g(0,z)=\lim_{u\to\infty}\phi(u)$ pour tout z>0. Il nous revient donc de montrer la continuité de $\int_0^\infty g(x,z)e^{-z}dz$. La fonction $(x,z)\mapsto g(x,z)e^{-z}$ est continue sur $[0,\infty[\times]0,\infty[$ et de plus, $|g(x,z)|e^{-z}\leq g(0,z)e^{-z}$ pour tout $x\geq 0$ avec $\int_0^\infty e^{-z}dz$ qui existe. Donc on a bien continuité de la fonction $x\mapsto \int_0^\infty g(x,z)e^{-z}dz$ en 0 et donc $\lim_{x\to 0} F(x)=\int_0^\infty \frac{\sin t}{t}dt+\lim_{x\to 0} x\int_0^\infty g(0,z)e^{-z}dz=\int_0^\infty \frac{\sin t}{t}dt=F(0)$: F est bien continue en 0. Ce raisonnement ne peut s'appliquer à $F'(x)=\int_0^\infty \frac{\sin t}{t}dt=\int_0^\infty \frac{\sin t}{t}d$

Il est possible de calculer explicitement F'(x) grâce à une double intégration par parties: $\int_0^x \sin t e^{-xt} dt = [-\cos t e^{-xt}]_0^\infty - x \int_0^\infty \cos t e^{-xt} dt = 1 - x \left([\sin t e^{-xt}]_0^\infty + x \int_0^\infty \sin t e^{-xt} dt = 1 - x^2 \int_0^x \sin t e^{-xt} dt.$ Donc $F'(x) = -\frac{1}{1+x^2}$, ce qui implique que $F(x) = -\operatorname{Arctan}(x) + F(0)$. Mais comme $\lim_{x \to \infty} F(x) = 0$ car $|F(x)| \le 1$. $\int_0^1 e^{-xt} dt \le \frac{1}{x} \text{ alors } F(0) = \lim_{x \to \infty} \operatorname{Arctan}(x) = \frac{\pi}{2}.$

Exercice $17: F(x) = \int_0^x \frac{dt}{2 + \sin(1/t)}$. Pour $\forall x \in \mathbb{R}$ la fonction ne pose pas de problème de définition. On applique directement le premier corollaire p12 pour conclure la dérivabilité sur \mathbb{R} .

(18) (***) Etudier l'existence, la continuité et la dérivabilité de la fonction $f(x) = \int_x^{x^2} \frac{1}{\ln t} dt$. Déterminer $\lim_{x \to +\infty} f(x)$.

Proof. Il est clair que l'on doit avoir $x \ge 0$ (sinon le logarithme n'est pas défini). Le seul problème possible est en 0, mais alors $f(0) = \int_0^0 \frac{1}{\ln t} dt = 0$ par définition.

Par changement de variables, $y = \ln t$ et $z = y/\ln x$, on obtient $f(x) = \int_1^2 \frac{x^z}{z} dz$. Une telle fonction est continue et dérivable sur $[0, \infty[$ car l'intégrale est définie sur un compact et la fonction $(x, z) \mapsto \frac{x^z}{z}$ est de classe \mathcal{C}^1 sur $[0, \infty[\times[1, 2]]]$. Il est clair que $f'(x) = \int_1^2 x^z dz = [\frac{1}{\ln x} x^z]_1^2 = \frac{x^2 - x}{\ln x}$, donc $\lim_{x \to \infty} f'(x) = +\infty = \lim_{x \to \infty} f(x)$.