Correction de certains exercices de la feuille n^o 1:

Espaces euclidiens et préhilbertiens

(4) (***) Soit E l'ensemble des fonctions définies sur [0,1]. Montrer que l'application $f, g \in E \mapsto$ $\sup_{x \in [0,1]} |f(x)| |g(x)|$ n'est pas un produit scalaire.

Proof. Ce n'est clairement pas un produit scalaire car si on prend f(x) = 1, on a $\langle f, f \rangle = 1$ et $\langle f, -f \rangle = 1$ ce qui contredit l'hypothèse de bilinéarité.

Il est plus intéressant de considérer $f, g \in E \mapsto \sup_{x \in [0,1]} f(x) g(x)$ qui n'est pas un produit scalaire non plus: par exemple pour f(x) = x et g(x) = 1, on a < f, g > = 1 et < -f, g > = 0 ce qui contredit l'hypothèse de bilinéarité. \square

(6) (**) Soit E l'ensemble des suites numériques $(u_n)_{n\in\mathbb{N}}$ telles que $\sum_{n=0}^{\infty}u_n^2<\infty$. Montrer que pour $(x,y)\in\mathbb{R}^2$, $2|xy|\leq x^2+y^2$. En déduire que E est bien un espace vectoriel, que l'application $(u_n)_n,(v_n)_n\in E\mapsto \sum_{n=0}^{\infty}u_nv_n$ existe bien, puis que c'est un produit scalaire sur E.

Proof. L'inégalité se montre en utilisant $(|x|-|y|)^2 \ge 0$. E est un sev de l'ensemble des suites numériques: la stabilité par la multiplication est évidente et pour montrer la stabilité pour l'addition on utilise le fait que $(u_n + v_n)^2 \le$ $2(u_n^2+v_n^2)$. Enfin, on vérifie aisément toutes les propriétés du produit scalaire (sorte de généralisation à n infini du produit scalaire euclidien classique sur \mathbb{R}^n).

- (7) Après avoir introduit un produit scalaire adéquat, montrer les inégalités suivantes:

 - (a) pour $x, x', y, y' \in \mathbb{R}^2$, $|xx' + yy'| \le \sqrt{x^2 + y^2} \sqrt{(x')^2 + (y')^2}$. (b) $\int_0^1 \frac{\cos t}{\sqrt{1 + t^2}} dt \le \left(\int_0^1 \cos^2(t) dt\right)^{\frac{1}{2}} \left(\int_0^1 \frac{1}{1 + t^2} dt\right)^{\frac{1}{2}} = \dots$? (c) Pour $P \in \mathbb{R}[X]$, $\left(\int_{-1}^1 t^2 P(t) dt\right)^2 \le \frac{2}{3} \int_{-1}^1 t^2 P^2(t) dt$.

Proof. On utilise l'inégalité de Cauchy-Schwarz dans les 3 cas, avec les produits scalaires: pour (a), <(x,y),(x',y')>=xx' + yy', pour (b), $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, pour (c), $\langle P, Q \rangle = \int_{-1}^1 t^2 P(t)Q(t)dt$.

(8) Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel constitué des matrice carrées de taille n à coefficients réels. Montrer que l'application $\langle M, N \rangle := \operatorname{Tr}({}^tMN)$ est un produit scalaire sur E. Déterminer $D_n(\mathbb{R})^{\perp}$ où $D_n(\mathbb{R})$ est l'ensemble des matrices diagonales de E.

Proof. On sait que Tr(AB) = Tr(BA) et Tr(A) = Tr(A): on en déduit donc la propriété de symétrie du produit scalaire. Comme $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B),$ on en déduit la propriété de bilinéarité. Un rapide calcul donc $\operatorname{Tr}({}^tAA) = \sum_{i=1}^n \sum_{k=1}^n a_{ki}^2 \text{ pour } A = (a_{ij}) \text{ donc } \langle A, A \rangle \geq 0. \text{ Enfin } \langle A, A \rangle = 0 \text{ entraı̂ne } a_{ki} = 0 \text{ pour tout } k \text{ et } i$ dans $\{1, \dots, n\}$, donc A = 0.

Il est clair d'après le cours que $\dim(D_n(\mathbb{R})^{\perp}) = n^2 - n$ car $\dim E = n^2$ et $\dim(D_n(\mathbb{R})) = n$. Soit M_{ij} la matrice carrée de taille n telle que M_{ij} est nulle partout sauf pour la ligne i et la colonne j où l'on a 1. Soit D une matrice diagonale quelconque. Il est clair que si $i \neq j$, alors $\operatorname{Tr}({}^tD\,M_{ij}) = 0$ car ${}^tD\,M_{ij}$ n'est pas une matrice diagonale, donc $< D, M_{ij} >= 0$. Ainsi $M_{ij} \in D_n(\mathbb{R})^{\perp}$ pour tout $i \neq j$. Or la famille de matrices $(M_{ij})_{ij}$ forme une base de E, donc la famille $(M_{ij})_{i\neq j}$ est libre et de cardinal n^2-n : elle est donc génératrice et donc une base de $D_n(\mathbb{R})^{\perp}$.

- (10) (**) On considère $E = \mathbb{R}^3$ canonique muni du produit scalaire euclidien usuel et $e = (e_1, e_2, e_3)$ sa base canonique. Soit a = (1, 1, 1) et $F = \{(x_1, x_2, x_3) \in E, x_1 - x_2 + x_3 = 0 \text{ et } x_1 = x_3\}.$
 - (a) Montrer que F est un s.e.v. de E dont on précisera une base dans e et la dimension.
 - (b) Déterminer une base orthonormale de F. En déduire pour $x \in E$, $p_F(x)$ la projection orthogo-
 - (c) Déterminer F^{\perp} . Calculer de deux manières différentes pour $x \in E$, $p_{F^{\perp}}(x)$ la projection orthogonale de x sur F^{\perp} .
 - (d) Calculer d(a, F).

Proof. (a) On montre facilement que si u_1 et u_2 sont dans F, si $\lambda_1, \lambda_2 \in \mathbb{R}$, alors $\lambda_1 u_1 + \lambda_2 u_2 \in F$: F est bien un sev de E. On voit que F est la réunion de 2 plans vectoriels non liés, donc F est une droite vectoriel de base ((1,2,1)) de dimension 1.

- (b) Comme $||(1,2,1)|| = \sqrt{6}$, on en déduit que $f_1 = (1,2,1)/\sqrt{6}$ est une base orthonormale de F. On sait que $p_F(x) = \langle x, f_1 \rangle f_1$, donc si $x = (x_1, x_2, x_3)$, on a $p_F(x) = (x_1 + 2x_2 + x_3)(1, 2, 1)/6$.
- (c) II est clair que dim $F^{\perp}=2$. On vérifie aisément que $f_2=(1,0,-1)$ et $f_3=(1,-1,1)$ sont deux vecteurs libres appartenant à F^{\perp} car orthogonaux à (1,2,1). On a $p_{F^{\perp}}(x)=x-p_F(x)=(5x_1-2x_2-x_3,-2x_1+2x_2-2x_3,-x_1-2x_2+5x_3)/6$. Autre méthode: par le procédé de Gram-Schmidt (ou bien directement), on a $f_2'=(1,0,-1)/\sqrt{2}$ et $f_3'=(1,-1,1)/\sqrt{3}$ qui forme une b.o.n. de F^{\perp} . Alors $p_{F^{\perp}}(x)=< x, f_2'>f_2'+< x, f_3'>f_3'$ et on retrouve ce qui précède.
- (12) (**) Soit P un projecteur sur F parallèlement à G, où F et G sont deux sev en somme directe d'un espace vectoriel euclidien E (c'est-à-dire que $P(x_F + x_G) = x_F$ pour tout $x_F \in F$, $x_G \in G$). Montrer que si pour tout $x \in E$, $||p(x)|| \le ||x||$ avec $||\cdot||$ une norme euclidienne de E, alors P est un projecteur orthogonal (soit F orthogonal à G).
 - Proof. Supposons que F n'est pas orthogonal à G. Considérons $u \in G^{\perp}$ tel que $u \notin F$ (un tel u existe car sinon F serait orthogonal à G). Alors $u P_F(u) \in G$ et $u P_F(u)$ est non nul car sinon cela signifierait que $u \in F$ que l'on a supposé distinct de G^{\perp} , donc u et $u P_F(u)$ sont orthogonaux. On peut donc appliquer le Théorème de Pythagore et $||u P_F(u)||^2 + ||u||^2 = ||P_F(u)||^2$ donc $||P_F(u)|| > ||u||$ ce qui contredit le fait que pour tout $u \in E$, $u \in E$,
- (13) (**) On munit \mathbb{R}^n du produit scalaire usuel. Soit $H = \{(x_1, \cdot, x_n) \in \mathbb{R}^n, \ a_1x_1 + \cdot + a_nx_n = 0\}$ où (a_1, \dots, a_n) sont des réels donnés non tous nuls. Chercher la matrice dans la base canonique de \mathbb{R}^n de la projection orthogonale sur H.

 $\begin{array}{l} \textit{Proof.} \ \ H^{\perp} \ \text{est de dimension 1 car dim} \ H = n-1. \ \text{On montre que le vecteur} \ (a_1, \cdots, a_n) \ \text{forme une base de} \ H \ (\text{non null puisque les} \ a_i \ \text{sont non tous nuls}), \ \text{puisque si} \ x \in H \ \text{alors} \ < (a_1, \cdots, a_n), x >= 0. \ \text{D'où} \ (a_1, \cdots, a_n) / \sqrt{a_1^2 + \cdots + a_n^2} \ \text{est une base orthonormale de} \ H^{\perp}. \ \ \text{Il est clair que} \ p_H(x) = x - p_{H^{\perp}}(x) \ \text{et} \ p_{H^{\perp}}(x) = \frac{< x, (a_1, \cdots, a_n) > (a_1, \cdots, a_n)}{(a_1^2 + \cdots + a_n^2)} = \\ (a_1^2 + \cdots + a_n^2)^{-1}(a_1 \sum_{i=1}^n a_i x_i, \cdots, a_n \sum_{i=1}^n a_i x_i). \ \ \text{En conséquence}, \ p_H(x) = (a_1^2 + \cdots + a_n^2)^{-1}(\sum_{i=1}^n a_i (a_i x_1 - a_1 x_i), \cdots, \sum_{i=1}^n a_i (a_i x_n - a_n x_i)), \ \text{ce qui donne les coefficients de la matrice.} \end{array}$

- (14) (**) Soit $E = \mathcal{C}^0([-1,1],\mathbb{R})$ l'espace vectoriel des fonctions continues de [-1,1].
 - (a) Montrer que l'on définit un produit scalaire sur E en posant $\langle f, g \rangle = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x)g(x)dx$.
 - (b) On considère le sous-espace $F = \mathbb{R}_2[X]$ de E. Trouver une base orthogonale de F (polynômes de Tchébycheff de première espèce).
 - (c) Quelle est la meilleure approximation de $f(x) = \sqrt{1-x^2}$ dans $\mathbb{R}_2[X]$ pour ce produit scalaire.

Proof. (a) On montre que l'on définit bien un produit scalaire, d'abord en montrant que $\langle f,g \rangle$ existe pour toutes fonctions f et g: pour ce faire, comme f et g sont des fonctions continues, le problème de convergence a lieu en 1 et en -1; en 1 par exemple, $f(t)g(t)(1-t^2)^{-1/2} \sim f(1)g(1)2^{-1/2}(1-t)^{-1/2}$ pour $t \to 1$, et par le théorème de comparaison des intégrales, comme $\int_0^1 (1-t)^{-1/2} dt$ existe (intégrale de Riemann), alors $\int_0^1 f(t)g(t)(1-t^2)^{-1/2} dt$ existe. Même chose en -1. Les 4 propriétés du produit scalaire se montrent alors classiquement.

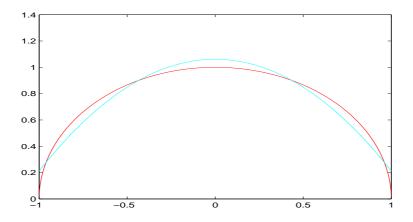
(b) On part de $(1, X, X^2)$, base de $\mathbb{R}_2[X]$. Or <1, X>=0 (intégrale d'une fonction impaire sur (-1, 1)), $< X, X^2>=0$ de même. Donc par le procédé de Gram-Schmidt, $e_1=1/\|1\|$, $e_2=X/\|X\|$ et $e_3=(X^2-< X^2, e_1>e_1)/\|X^2-< X^2, e_1>e_1\|$ est une base orthonormale de F. Or $\|1\|^2=[Arcsin(t)]_{-1}^1=\pi$ et $\|X\|^2=\sqrt{\pi}< X^2, e_1>=[Arcsin(t)]_{-1}^1-\int_{-1}^1(1-t^2)^{1/2}dt=\pi-\int_0^\pi\sin^2\theta d\theta=\pi/2$, d'où $X^2-< X^2, e_1>e_1=X^2-1/2$, soit $\|X^2-< X^2, e_1>e_1\|^2=\int_{-1}^1(t^2-1/2)^2(1-t^2)^{-1/2}dt=\int_0^\pi(\cos^2\theta-1/2)^2d\theta=\frac14\int_0^\pi\cos^2(2\theta)d\theta=\pi/8$. Ainsi on trouve:

$$e_1 = \frac{1}{\sqrt{\pi}}, \quad e_2 = X\sqrt{\frac{2}{\pi}} \quad \text{et} \quad e_3 = (X^2 - \frac{1}{2})\sqrt{\frac{8}{\pi}}.$$

(c) Il suffit de calculer $P_F(\sqrt{1-X^2})$, où P_F est la projection orthogonale sur F. Mais:

$$\begin{split} P_F(\sqrt{1-X^2}) &= <\sqrt{1-X^2}, e_1 > e_1 + <\sqrt{1-X^2}, e_2 > e_2 + <\sqrt{1-X^2}, e_3 > e_3 \\ &= \frac{1}{\pi} \Big(2 + 0 + 8 * \big[\frac{t^3}{3} - \frac{t}{2} \big]_{-1}^1 \Big(X^2 - \frac{1}{2} \Big) \Big) = \frac{2}{3\pi} (5 - 4X^2). \end{split}$$

Voir l'approximation sur la figure ci-dessous, où en rouge est la fonction $x \to \sqrt{1-x^2}$ et en bleu la fonction $x \to \frac{2}{3\pi}(5-4x^2)$:



(15) (**) Calculer le minimum sur \mathbb{R}^2 de $f(a,b) = \int_0^{\pi} (x^2 + ax + b)^2 \sin(x) dx$. Indication: On pourra penser à une projection après avoir introduit le produit scalaire $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)\sin(t)dt$.

Proof. Le produit scalaire proposé en est un car $\sin t$ est positive $\sup [0,\pi]$. On a $f(a,b) = \|x^2 - (-ax - b)\|^2$ donc on recherche $\inf_{v \in F} \|u - v\|^2$ avec u le vecteur $x \mapsto x^2$ et F le sev engendré par les fonctions $x \mapsto 1$ et $x \mapsto x$, soit $F = \mathbb{R}_1[X]$. Comme on a affaire à un sev de dimension finie (=2) il existe un projeté orthogonal de u sur F, donc $\inf_{a,b \in \mathbb{R}^2} f(a,b) = \|u - P_F(u)\|^2$. Il est clair que $P_F(u) = -a_0x - b_0$ avec a_0 et b_0 tels que $(x^2 + a_0x + b_0, 1) > 0$ puisque $(x^2 + a_0x + b_0) \in F^\perp$. Il nous faut donc calculer des intégrales de type $I_k = \int_0^\pi x^k \sin(x) dx$, qui s'obtiennent par intégrations par parties, puisque pour $k \ge 2$, $I_k = [-\cos(x)x^k]_0^\pi + k \int_0^\pi x^{k-1} \cos(x) dx = \pi^k + k([x^{k-1}\sin(x)]_0^\pi - k(k-1)I_{k-2} = \pi^k - k(k-1)I_{k-2}$. Comme $I_0 = 2$ et $I_1 = \pi$, on a $I_2 = \pi^2 - 4$ et $I_3 = \pi^3 - 6\pi$. D'où $I_3 + a_0I_2 + b_0I_1 = 0$ et $I_2 + a_0I_1 + b_0I_0 = 0$, d'où $a_0 = (I_2I_1 - I_0I_3)/(I_0I_2 - I_1^2) = -\pi$ et $b_0 = 2$. On conséquence $P_F(u) = \pi x - 2$ et $\inf_{a,b \in \mathbb{R}^2} f(a,b) = \int_0^\pi (x^2 - \pi x + 2)^2 \sin(x) dx = I_4 - 2\pi I_3 + (\pi^2 + 4)I_2 - 4\pi I_1 + 4I_0 = \pi^4 - 12\pi^2 + 48 - 2\pi(\pi^3 - 6\pi) + (\pi^2 + 4)(\pi^2 - 4) - 4\pi^2 + 8 = 40 - 4\pi^2 \approx 0.52$.

- (1) (**) Soit E un espace euclidien de dimension n muni d'un produit scalaire $\langle \cdot, \cdot \rangle_1$ et (e_1, \cdots, e_n) une base orthonormale de E pour $\langle \cdot, \cdot \rangle_1$. Soit $\langle \cdot, \cdot \rangle_2$ un produit scalaire sur E tel qu'il existe $x_0 \in E$ vérifiant $\langle x_0, x_0 \rangle_1 \neq \langle x_0, x_0 \rangle_2$. Montrer que (e_1, \cdots, e_n) n'est pas une base orthonormale pour $\langle \cdot, \cdot \rangle_2$.
- (18) (***) Soit E un espace euclidien muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et de la norme associée. Pour $x \in E \setminus \{0\}$, on pose $f(x) = \frac{x}{\|x\|^2}$.
 - (a) Montrer que f vérifie $f^2 = f_O f = Id_E$.
 - (a) Montrer que pour tout $x, y \in E \setminus \{0\}, \|f(x) f(y)\| = \frac{\|x y\|}{\|x\| \|y\|}.$
 - (c) Soit $a, b, c, d \in E$. Montrer que: $||a-c|| ||b-d|| \le ||a-b|| ||c-d|| + ||b-c|| ||a-d||$ (Indication: se ramener au cas a=0 et utiliser l'application f).

$$\frac{\|b-d\|}{\|b\| \|d\|} \le \frac{\|b-c\|}{\|b\| \|c\|} + \frac{\|c-d\|}{\|c\| \|d\|}.$$

et en multipliant le tout par $\|b\| \|d\| \|c\|$, on obtient $\|c\| \|b-d\| \le \|b-c\| \|d\| + \|c-d\| \|b\|$. On a l'inégalité demandée pour a=0. Maintenant, si on applique cette inégalité à b'=b-a, c'=c-a, d'=d-a, on obtient bien $\|c-a\| \|b-d\| \le \|b-c\| \|d-a\| + \|c-d\| \|b-a\|$.

- (19) (*****) Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} muni du produit scalaire défini par $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$. Soit $F=\mathbb{R}[X]$ le sous-espace vectoriel des fonctions polynomiales et soit $g(x)=e^x$ pour $x\in[0,1]$.
 - (a) Montrer que $g \notin F$.
 - (b) Montrer qu'il existe une suite (f_n) de fonctions polynomiales (à préciser) convergeant vers g pour la norme euclidienne.
 - (c) En déduire que $F^{\perp} = \{0\}$.

Proof. (a) On a $g^{(k)}(0) = 1$ pour tout $k \in \mathbb{N}$, donc g ne peut pas être un polynôme car sinon sa dérivée s'annulerait forcément à partir d'un certain rang.

- (b) Par la formule de Taylor-Lagrange, pour tout $x \in [0,1]$ il existe $c_x \in [0,1]$ tel que $g(x) = \sum_{k=0}^n \frac{x^n}{n!} + e^{c_x} \frac{x^{n+1}}{(n+1)!}$, donc si $f_n(x) = \sum_{k=0}^n \frac{x^n}{n!}$, on a $|g(x) f_n(x)| \le e^{\frac{x^{n+1}}{(n+1)!}}$ pour tout $x \in [0,1]$. Ainsi $||g f_n|| \le e^{\frac{x^{n+1}}{((n+1)!)^2}} dx^{n+1}$ and $||g(x) f_n|| \le e^{\frac{x^{n+1}}{(n+1)!}}$ donc $||g f_n|| \to 0$ quand $||g f_n|| \to 0$
- (c) (Attention: question très difficile!) On sait que $g \notin F$, donc pour tout $P \in F$, ||g-P|| > 0 (car sinon, d'après la propriété 4 du produit scalaire, g-P=0 donc $g=P\in F$). De plus, d'après la question 2, $\inf_{P\in F}||g-P|| \leq ||g-f_n||$ pour tout $n\in \mathbb{N}$ donc $\inf_{P\in F}||g-P||=0$. Donc il n'existe pas $Q_g\in F$ tel que $||g-Q_g||=\inf_{P\in F}||g-P||=0$. g n'admet donc pas de projeté orthogonal sur F et on ne peut pas essayer de considérer la relation $g=p_F(g)+p_{F^\perp}(g)...$ En fait, on sait (Théorème de Stone-Weierstrass) que pour toute fonction continue u sur [0,1], il existe une suite $(P_n)_{n\in\mathbb{N}}$ telle que $P_n\in\mathbb{R}_n[X]$ et $\lim_{n\to\infty}\sup_{x\in[0,1]}|u(x)-P_n(x)|=0$. Comme $||u-P_n||\leq\sup_{x\in[0,1]}|u(x)-P_n(x)|$, comme dans $\mathbb{R}_n[X]$ qui est un sev de dimension finie il existe un unique projeté orthogonal $p_n(u)$ de u dans $\mathbb{R}_n[X]$, alors par définition $||u-p_n(u)||\leq ||u-P_n||\to 0$ quand $n\to\infty$. Soit $u\in(\mathbb{R}_n[X])^\perp$. Alors d'après Pythagore, $||u||^2+||p_n(u)||^2=||u-p_n(u)||^2$ car $p_n(u)\in\mathbb{R}_n[X]$. D'après ce qui précède, on en déduit donc que quand $n\to\infty$, $||u||^2+||p_n(u)||^2\to 0$, soit $||u||^2\to 0$, ce qui signifie que si $u\in\bigcap_{n\in\mathbb{N}}(\mathbb{R}_n[X])^\perp$ alors u=0 (d'après la propriété 4 du produit scalaire). Enfin, comme $\mathbb{R}_n[X]\subset\mathbb{R}[X]$, on sait que $(\mathbb{R}[X])^\perp\subset(\mathbb{R}_n[X])^\perp$ et ainsi si $u\in(\mathbb{R}[X])^\perp$ alors $u\in\bigcap_{n\in\mathbb{N}}(\mathbb{R}_n[X])$ et donc u=0: $F^\perp=(\mathbb{R}[X])^\perp=\{0\}$.