

Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 2012-2013

Feuilles de TD du cours d'Analyse S4

JEAN-MARC BARDET (UNIVERSITÉ PARIS 1, SAMM)

Email: bardet@univ-paris1.fr

Page oueb: http://samm.univ-paris1.fr/-Jean-Marc-Bardet-

Feuille n^o 1:

Intégrales généralisées

(1) (*) Calculer les intégrales définies suivantes :

$$A = \int_{-1}^{2} (2t - 1)^{3} dt \quad B = \int_{0}^{3} \frac{1}{2t^{2} + 3t + 1} dt \quad C = \int_{-2}^{1} \frac{t}{\sqrt{3 - t}} dt \quad D = \int_{1}^{3} \ln|2t - 1| dt$$

$$A = \int_{-2}^{2} (2t - 1)^{3} dt = \frac{1}{2} \left[3^{4} - 3^{4} \right] = 0; B = \int_{-2}^{3} \frac{1}{\sqrt{3 - t}} dt = \int_{-2}^{3} \frac{1}{\sqrt{3 - t}} dt = \ln(\frac{7}{2}); D = \int_{-2}^{3} \ln|2t - 1| dt = \int_{-2}^{3} \frac{1}{\sqrt{3 - t}} dt = \ln(\frac{7}{2}); D = \int_{-2}^{3} \ln|2t - 1| dt = \int_{-2}^{3} \frac{1}{\sqrt{3 - t}} dt = \ln(\frac{7}{2}); D = \int_{-2}^{3} \ln|2t - 1| dt = \int_{-2}^{3} \frac{1}{\sqrt{3 - t}} dt = \ln(\frac{7}{2}); D = \int_{-2}^{3} \ln|2t - 1| dt = \int_{-2$$

$$A = \int_{-1}^{2} (2t-1)^{3} dt = \frac{1}{8} \left[3^{4} - 3^{4} \right] = 0; B = \int_{0}^{3} \frac{1}{2t^{2} + 3t + 1} dt = \int_{0}^{3} \frac{1}{(x + \frac{1}{2})(x + 1)} dt = Ln(\frac{7}{4}); D = \int_{1}^{3} \ln|2t - 1| dt = \frac{7}{2} Ln5 - 2; D = \int_{1}^{3} \ln|2t - 1| dt \text{ il y a problème}$$

(2) (*) Étudier la convergence des intégrales suivantes:

$$A = \int_{1/2}^{0} (2t - 1)^{\alpha} dt \text{ pour } \alpha \in \mathbb{R} \quad B = \int_{-1}^{3} \frac{1}{2t^2 + 3t + 1} dt \quad C = \int_{0}^{3} \frac{t}{\sqrt{3 - t}} \quad D = \int_{-1}^{1/2} \ln|2t - 1| dt$$

 $\frac{\underline{\text{Proof}}}{A=\int_{1/2}^0 (2t-1)^\alpha dt}$ pour $\alpha\in\mathbb{R};$ Il y a problème de convergence en $\mathbf{t}=1/2$

Si
$$\alpha \leq -1$$
 alors A diverge; si $\alpha > -1$ A converge

$$C = \int_0^3 \frac{t}{\sqrt{3-t}} \text{Il a problème de convergence en } 3 \ C = \lim_{x \to 3} \int_0^x \frac{t}{\sqrt{3-t}} = \lim_{x \to 3} \int_0^x \left[-\sqrt{(3-t)} + \frac{3}{\sqrt{3-t}} \right] dt; \text{ elle converge et on a } t = \lim_{x \to 3} \int_0^x \left[-\sqrt{(3-t)} + \frac{3}{\sqrt{3-t}} \right] dt$$

$$A = -\lim_{x \to 1/2} \int_0^x (2t-1)^\alpha dt \text{ dans l'intervalle }]0; 1/2], \text{ on a } 2t-1 < 0 \text{ d'où } \alpha \in \mathbb{Z} \text{ on pose } u = 2-1t \text{ on a } A = \frac{1}{2}(-1)^{\alpha+1} \lim_{x \to 0} \int_x^1 u^\alpha du$$
 Si $\alpha \le -1$ alors A diverge; si $\alpha > -1$ A converge
$$C = \int_0^3 \frac{t}{\sqrt{3-t}} \text{ Il a problème de convergence en } 3 C = \lim_{x \to 3} \int_0^x \frac{t}{\sqrt{3-t}} = \lim_{x \to 3} \int_0^x \left[-\sqrt{(3-t)} + \frac{3}{\sqrt{3-t}} \right] dt; \text{ elle converge et on a },$$

$$C = 2(\sqrt{2} + 2\sqrt{5}) + \frac{2}{3}(3)^{3/2}; D = \int_{-1}^{1/2} \ln|2t-1| dt, \text{ Il y a problème de convergence en } 1/2, \text{ en posant } u = 1-2t, \text{ on a } D = \frac{1}{2} \int_0^3 \ln(u) \, du = 3\ln 3 - 3 \ln 3 + 3 \ln$$

(3) (**) Étudier la convergence des intégrales suivantes:

$$A = \int_0^2 \sin(\frac{2+t}{\sqrt{t}}) dt \quad B = \int_0^2 \frac{e^t}{\sqrt{2t-t^2}} dt \quad C = \int_0^1 \frac{\sin t}{\sqrt{t^3-t^2}} dt$$

$$\frac{\text{Proof}}{A = \int_0^2 \sin(\frac{2+t}{\sqrt{t}}) dt}, \text{ Problème de convergence en 0 mais on a } \left| \sin(\frac{2+t}{\sqrt{t}}) \right| \leq 1, \text{ A converge absolument. } B = \int_0^2 \frac{e^t}{\sqrt{2t-t^2}} dt$$

$$\text{Problème de convergence en 0 et 2, } B = \int_0^2 f(t) dt, \text{ en 0, on a } f(t) \sim \frac{1}{\sqrt{2t}} \text{ et } \int_0^1 \frac{1}{\sqrt{2t}} dt \text{ converge; en 2 , } f(t) \sim \frac{e^2}{\sqrt{2}} \times \frac{1}{(2-t)^{1/2}} \text{ et } \int_1^2 \frac{1}{\sqrt{(2-t)^{1/2}}} dt \text{ converge, on pose u = 2-t; par conséquent A converge}$$

Converge, on pose
$$u=2^{-t}$$
, par consequent A converge $C=\int_0^1 \frac{\sin t}{\sqrt{43-t^2}} dt$, dans l'intervalle $[0;1] t^3-t^2 \leq 0$, d'où l'intrégrale n'est pas définie.

converge, on pose u = 2-t; par conséquent A converge
$$C = \int_0^1 \frac{\sin t}{\sqrt{t^3 - t^2}} dt, \text{ dans l'intervalle } [0;1] t^3 - t^2 \le 0, \text{ d'où l'intrégrale n'est pas définie.}$$

$$(4) \text{ (**) Déterminer la nature (semi-convergente, absolument convergente, divergente) des intégrales:}$$

$$A = \int_0^{+\infty} \left(1 - \cos(1/t)\right) dt \quad B = \int_0^{+\infty} \sin(1/t) e^{-t} dt \quad C = \int_{-\infty}^{+\infty} \frac{\cos(2t - 3)}{\sqrt{|t| - 1}} dt \quad D = \int_0^2 \frac{t}{\tan t} dt$$

 $\frac{\text{Proof}}{A = \int_0^{+\infty} (1 - \cos(1/t)) dt}, \text{On pose} f(t) = 1 - \cos(1/t)$

$$A_1 = \int_0^1 \left(1 - \cos(1/t)\right) dt = 1 - \int_0^1 \left(\cos(1/t)\right) dt = 1 - \int_1^{+\infty} \frac{\cos(u)}{u^2} du \text{ qui converge avec }, u = 1/t = 1 - \int_0^{+\infty} \frac{\cos(u)}{u^2} du = 1$$

$$A_2 = \int_1^{+\infty} \left(1 - \cos(1/t)\right) dt = \int_0^1 \frac{1 - \cos(u)}{u^2} dt, \lim_{u \to 0} \frac{1 - \cos(u)}{u^2} = 1/2 \text{ d'où } A_2 \text{ converge, par conséquent A converge simplement}$$

$$A_1 = \int_0^1 \left(1 - \cos(1/t)\right) dt = 1 - \int_0^1 \left(\cos(1/t)\right) dt = 1 - \int_1^{+\infty} \frac{\cos(u)}{u^2} du \text{ qui converge avec }, u = 1/t$$

$$A_2 = \int_1^{+\infty} \left(1 - \cos(1/t)\right) dt = \int_0^1 \frac{1 - \cos(u)}{u^2} dt, \lim_{u \to 0} \frac{1 - \cos(u)}{u^2} = 1/2 \text{ d'où } A_2 \text{ converge, par conséquent A converge simplement}$$

$$B = \int_0^{+\infty} \sin(1/t) e^{-t} dt \text{ , Problème de convergence en 0 et en } +\infty. \left|\sin(1/t) e^{-t}\right| \le e^{-t} \text{ et} \int_0^{+\infty} e^{-t} dt \text{ converge d'où B converge absolument,}$$

$$C = \int_{-\infty}^{+\infty} \frac{\cos(2t - 3)}{\sqrt{|t| - 1}} dt \text{Dans l'intervalle } [-1; 1], \ |t| - 1 \le 0 \text{ D'où C n'est pas définie}$$

$$C = \int_{-\infty}^{+\infty} \frac{\cos(2t-3)}{\sqrt{|t|-1}} dt$$
 Dans l'intervalle $[-1;1]$, $|t|-1 \le 0$ D'où C n'est pas définie

(5) (**) Après avoir montré son existence, calculer $\lim_{n \to +\infty} \frac{1}{n} \sum_{n=1}^{\infty} \frac{k}{n} \ln(1+k^2/n^2)$.

$$\frac{\text{Proof}}{\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + k^2/n^2) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} (\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) \ln(1 + (\frac{k}{n}^2)) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}^2) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}^2) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}^2) = \lim_{n \to +\infty} \frac$$

On retrouve une somme de Riemann, lorsqu'elle existe on a:
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) = \int_{0}^{1} f(t) dt$$
, avec $f(t) = t \ln(1 + t^{2})$

en intégrant par parties on a
$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n\frac{k}{n}\ln{(1+k^2/n^2)}=\ln{(2)}-1/2$$

(6) (***) Étudier la convergence des intégrales suivantes:

$$A = \int_{0}^{+\infty} \sqrt{t}^{-\ln t} dt \qquad B = \int_{1}^{+\infty} t \exp(-\ln^2 t) dt \qquad C = \int_{1}^{+\infty} \frac{\cos t}{t(\ln(1+t))^3} dt$$

$$D = \int_{1}^{+\infty} \sin t \ln(\frac{1}{t}) dt \qquad E = \int_{0}^{+\infty} \frac{\cos(t^2)}{\sqrt{t}} dt \qquad I = \int_{0}^{\infty} \frac{\tan(\pi e^{-t})}{\sqrt{t}} dt$$

$$\frac{\text{Proof}}{A = \int_0^{+\infty} \sqrt{t}^{-\ln t} \, dt; \ \lim_{t \to +\infty} t^2(\sqrt{t}^{-\ln t}) = 0, \ \text{A converge absolument}$$

$$A = \int_0^{+\infty} \sqrt{t^{-\ln t}} dt = A = \int_0^{+\infty} \exp(-\frac{1}{2}\ln(t)^2) dt \text{ on fait deux changements de variables } \ln(t) = u \text{ et } v = \frac{u-1}{\sqrt{2}}$$
et on a $A = e^{1/2} \times \sqrt{2} \int_{-\infty}^{+\infty} e^{-v^2} dv = \sqrt{2\pi}e^{1/2}$

$$B = \int_1^{+\infty} t \exp(-\ln^2 t) dt; \quad \lim_{t \to +\infty} t^2 (te^{-(\ln(t))^2}) = 0, \text{ B converge absolument}$$

$$B = \int_1^{+\infty} t \exp(-\ln^2 t) dt, \text{ On fait deux changements de variables, } u = \ln(t); \quad v = u - 1; \text{ d'où}$$

$$B = e(\int_0^1 t \exp(-v^2) dv + \int_0^{+\infty} \exp(-v^2) dv) \text{ Ces deux intégrales sont finies}$$

$$C = \int_1^{+\infty} \frac{\cos t}{t(\ln(1+t))^3}, \text{ dton pose } u = t + 1 \text{ et on a } C = \int_2^{+\infty} \frac{\cos(u-1)}{(u-1)(\ln(u))^3} du = \int_2^{+\infty} f(u) du$$

$$|f(u)| \le \frac{1}{(u-1)(\ln u)^3} \sim \frac{1}{(u)(\ln u)^3} \text{ et } \int_2^{+\infty} \frac{1}{(u)(\ln u)^3} du \text{ est une intégrale de Bertrand qui converge d'où C converge absolument}$$

$$E = \int_0^{+\infty} \frac{\cos(t^2)}{\sqrt{t}} dt = 1/2 \int_0^{+\infty} t^{-3/2} (2t) \cos(t^2) dt \text{ en intégrant par parties on a } E = \left[\frac{\sin(t^2)}{t^{3/2}}\right]_1^{+\infty} + 3/2 \int_1^{+\infty} \frac{\sin(t^2)}{t^{5/2}} dt$$
et $\lim_{t \to +\infty} \frac{\sin(t^2)}{t^{3/2}} = 0$ et $\frac{|\sin(t^2)|}{t^{5/2}} \le \frac{1}{t^{5/2}} d^4$ où E converge absolument.

(7) (*) Etudier l'existence des intégrales suivantes et calculer les lorsqu'elles existent:

$$A = \int_{2}^{+\infty} \frac{t}{t^{3} - 1} dt \quad B = \int_{-\infty}^{+\infty} \frac{1}{4t^{2} + 4t + 10} dt \quad C = \int_{0}^{1} t \ln(1 - t) dt \quad D = \int_{0}^{1} \frac{1}{\sqrt{2 - t^{2}}} dt$$

$$\frac{\text{Proof}}{A} = \int_{2}^{+\infty} \frac{t}{t^{3} - 1} dt = \int_{2}^{+\infty} \frac{t}{(t - 1)(t^{2} + t + 1)} dt, \text{ en } + \infty, \frac{t}{t^{3} - 1} \sim \frac{t}{t^{2}}, \text{ d'où A converge absolument}$$

$$A = 1/3 \int_{2}^{+\infty} \left(\frac{1}{t - 1} + \frac{1}{t^{2} + t - 1}\right) dt = 1/3 \left[\ln|t - 1|\right]_{2}^{+\infty} - 1/6 \int_{2}^{+\infty} \frac{2t + 1}{t^{2} + t + 1} dt + 4/6 \int_{2}^{+\infty} \frac{1}{t^{2} + t + 1} dt$$

$$B = \int_{-\infty}^{+\infty} \frac{1}{4t^{2} + 4t + 10} dt = 1/6 \int_{-\infty}^{+\infty} \frac{1}{1 + u^{2}} du = \pi/6 \text{ avec } u = (2t + 1)/3$$

$$C = \int_{0}^{1} t \ln(1 - t) dt = \int_{0}^{1} \ln(u) du + \int_{0}^{1} u \ln(u) du \text{ avec } u = 1 - t, \text{ d'où C converge et on a } C = -3/4$$

$$D = \int_{0}^{1} \frac{1}{\sqrt{2 - t^{2}}} dt = \int_{0}^{1} \frac{1}{\sqrt{1 - u^{2}}} du \text{ avec } u = t/\sqrt{2} \text{ et en posant à nouveau } v = \sin u \text{ on a } D = \frac{\pi}{4}$$

- (8) (**) On pose $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$, pour $n \in \mathbb{Z}$.
 - (a) Déterminer l'ensemble de définition de Γ .
 - (b) Calculer $\Gamma(1)$ et $\Gamma(2)$. Déterminer une relation de récurence entre $\Gamma(n+1)$ et $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
 - (c) Calculer $\Gamma(n)$.

Proof

Voir TD Analyse 2011-2012 exercice N°8

(9) (***) Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, dérivable sur \mathbb{R}_+ , telle que $\lim_{x \to +\infty} xf(x) = 0$ et $\lim_{x \to +\infty} x^3 f'(x) = 0$. Montrer que l'intégrale $\int_{0}^{+\infty} f(t)dt$ converge.

Voir TD Analyse 2011-2012 exercice N°9

4

Feuille n^o 2:

Intégrales multiples

(1) (*) Calculer
$$\int \int_{\Delta} x^2 - xy dx dy \text{ où } \Delta = [0, 1]^2.$$

(2) (*) Calculer
$$\int \int_{\Delta} (1-x^2+2y)^2 dx dy$$
 où $\Delta = [0,1]^2$.

(3) (*) Calculer
$$\int \int_{\Delta} e^{2xy} dx dy$$
 où $\Delta = [0, 1]^2$.

(4) (**) Calculer
$$\int \int_{\Delta} \frac{dxdy}{(4-2x+y)^{-1}}$$
 où $\Delta = \{(x,y) \in [0,1[^2, x \le y]\}.$

(5) (**) Calculer
$$\int \int_{\Delta} \frac{y}{x+y} dx dy$$
 où $\Delta = \{(x,y) \in \mathbb{R}^2, 0 \le y \le x^2 \le 1\}.$

(6) (**) Calculer
$$\int \int_{\Delta} \frac{xy}{a^2 + x^2 + y^2} dx dy$$
 où $\Delta = \{(x, y) \in [0, \infty[^2, x^2 + y^2 \le a^2\} \text{ avec } a > 0 \text{ fixé.}$

(7) (**) Calculer
$$\int \int_{\Delta} \cos(x+y)e^{-x-2y} dx dy$$
 où $\Delta = \{(x,y) \in [0,\infty[^2, x-2y \le 1]\}.$

(8) (*) Calculer
$$\int \int \int_{\Delta} (x+y^2)z \, dx dy dz$$
, puis $\int \int \int_{\Delta} \cos(x+y) dx dy dz$, où $\Delta = \{(x,y,z) \in [0,\infty[^3,x+y+2z\leq 2]\}$.

(9) (*) Calculer
$$\int \int_{\Delta} x^2 \cos(xy) \, dx dy$$
 où $\Delta = \{(x,y) \in]0, 1/2[\times]0, \frac{\pi}{2}[\}.$

(10) (**) Calculer
$$\int \int_{\Delta} xy \, dx \, dy$$
 où $\Delta = \{(x,y) \in \mathbb{R}^2, x^2 + 2y^2 \le 3\}.$

(11) (**) Calculer
$$\int \int \int_{\Delta} \frac{z^3}{(y+z)(x+y+z)} dx dy dz$$
 où $\Delta = \{(x,y,z) \in [0,\infty[^3, 1 \le x+y+z \le 2\}.$

(12) (**) Calculer
$$\int \int \int_{\Delta} xyz \, dx dy dz$$
 où $\Delta = \{(x,y,z) \in [0,\infty[^3,\,x+y+z\leq 1\} \text{ (on pourra poser } u=x+y+z,\,uv=z+y \text{ et } z=uvw).$

(13) (**) Déterminer l'ensemble des valeurs de
$$\alpha$$
 telles que $I_{\alpha} = \int_{1}^{\infty} \int_{1}^{\infty} (1+x+y)^{\alpha} dxdy$ existe, auquel cas, calculer I_{α} . Même question pour $J_{\alpha} = \int_{0}^{1} \int_{0}^{1} (x-y)^{\alpha} dxdy$.

(14) (***) Montrer que l'intégrale
$$I_{\alpha} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{\sin(xy)}{(x+y)^{2}} dxdy$$
 existe. Est-elle absolument ou semi-convergente?

(15) (**) Calculer le volume de l'ensemble
$$\Delta = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le a^2 \text{ et } y^2 + z^2 \le a^2 \}$$
 avec $a > 0$ (on pourra commencer par tracer Δ).

(16) (***) Pour
$$(a,b) \in]1, \infty[^2, \text{ calculer } \int \ln \left(\frac{a-\cos t}{b-\cos t}\right) dt$$
 (on pourra introduire la fonction à deux variables $(u,t) \mapsto (u-\cos t)^{-1}$ et utiliser le Théorème de Fubini).

(17) (**) Calculer le volume d'une boule de rayon
$$r > 0$$
 dans \mathbb{R}^3 .

Feuille n^o 3:

Intégrales dépendant d'un paramètre

- (1) (*) Montrer que $I_n = \int_0^1 (\cos x)^n dx$ existe pour tout $n \in \mathbb{N}^*$. Expliciter la limite ℓ de $(I_n)_n$.
- (2) (*) Montrer que $J_n = \int_1^\infty x^{-2n} dx$ existe pour tout $n \in \mathbb{N}^*$. Expliciter la limite ℓ de $(J_n)_n$.
- (3) (**) Montrer que $K_n = \int_0^1 \frac{n}{\sqrt{x^2 + n^2}} dx$ existe pour tout $n \in \mathbb{N}^*$. Expliciter la limite ℓ de $(K_n)_n$. Comparer en calculant la valeur explicite de K_n .
- (4) (**) Déterminer, si elle existe, $\lim_{n\to\infty} \int_0^n \left|1-\frac{x}{2n}\right|^n dx$.
- (5) (**) Déterminer, si elle existe, $\lim_{n\to\infty} \int_0^\infty \cos(nx) e^{-x} dx$.
- (6) (***) Déterminer, si elle existe, $\lim_{n\to\infty} \int_0^\infty \frac{dx}{|1-2x^n|^{1/n}} dx$.
- (7) (**) Soit $f: \mathbb{R} \to \mathbb{R}$ une application dérivable et bornée sur \mathbb{R} . Après avoir montré son existence, calcular $\lim_{n\to\infty} \int_0^\infty e^{-nx} f(x) dx$.
- (8) (***) Soit $(a_n)_n$ une suite de $]0,\infty[$ qui converge vers 0. Soit $f:\mathbb{R}^+\mapsto\mathbb{R}$ continue et bornée. Déterminer la limite de $\int_0^\infty \frac{a_n f(x)}{a_n^2 + x^2} dx$ (on pourra découper l'intégrale sur $[0,\sqrt{a_n}]$ et $[\sqrt{a_n},\infty[)$.
- (9) (***) Soit f une application définie sur [0,1], à valeurs strictement positives, et continue. Pour $\alpha \geq 0$, on pose $F(\alpha) = \int_0^1 f^{\alpha}(t)dt$. (a) Justifier que F est dérivable sur \mathbb{R}_+ , et calculer F'(0).

 - (b) En déduire la valeur de $\lim_{\alpha \to 0} \left(\int_0^1 f^{\alpha}(t) dt \right)^{1/\alpha}$.
- (10) (*) Soit $F(x) = \int_0^1 e^{-\cos(x+t)} dt$. Montrer que F est définie, continue et de classe \mathcal{C}^1 sur \mathbb{R} , et calculer F'(x).
- (11) (**) Le but de l'exercice est de calculer la valeur de l'intégrale de Gauss $I = \int_0^{+\infty} e^{-t^2} dt$. On définit deux fonctions f, g sur \mathbb{R} par les formules $f(x) = \int_0^x e^{-t^2} dt$ et $g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$. Prouver que, pour tout $x \in \mathbb{R}$, $g(x) + f^2(x) = \frac{\pi}{4}$. En déduire la valeur de I.
- (12) (**) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. Pour $x \in \mathbb{R}$, on pose $Lf(x) = \int_0^{+\infty} f(t)e^{-xt}dt$.

 (a) Montrer que si $\int_0^{+\infty} f(t)e^{-xt}dt$ converge, alors $\int_0^{+\infty} f(t)e^{-yt}dt$ converge pour y > x. En déduire la forme de l'ensemble de définition de Lf?
 - (b) On suppose f bornée. Montrer que $\lim_{x\to+\infty} Lf(x)=0$.
- (13) (**) On pose $F(x) = \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt$. (a) Montrer que F est définie et continue sur $[0, +\infty[$ et déterminer $\lim_{x\to +\infty} F(x)$. (b) Montrer que F est dérivable sur $]0, +\infty[$ et démontrer que $F'(x) = -\frac{e^{-x}}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$.
 - (c) En intégrant F' sur $]0, +\infty[$, montrer que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- (14) (**) Donner le domaine de définition, de continuité et dérivabilité de $f(x) = \int_0^1 \cos(\sqrt{x^2 t^2}) dt$.
- (15) (**) Donner le domaine de définition, de continuité et dérivabilité de $f(x) = \int_0^\infty \frac{\sin(xt)}{1+e^t} dt$.
- (16) (***) Mêmes questions mais avec $f(x) = \int_0^\infty \frac{\sin(xt)}{t^\alpha} dt$, où $\alpha > 0$.
- (17) (**) Donner le domaine de définition, de continuité et dérivabilité de la fonction $f(x) = \int_0^\infty e^{-xt^2} \cos(x) dt$. Calculer f' et en déduire que f est solution d'une équation différentielle dont la résolution permet de donner l'expression exacte de f. En déduire $\int_0^\infty e^{-t^2} dt$.

6

Feuille n^o 4:

Equations différentielles linéaires

(1) (*) Déterminer les solutions maximales des équations différentielles suivantes avec la condition initiale y(0) = 0:

$$y'-2y=x-2$$
; $2y'+4y=3\sin(2x)$; $y'-y=1+xe^x$; $y'-2y=-x\cos(x)$.

(2) (**) Déterminer les solutions maximales des équations différentielles suivantes avec la condition initiale y(0) = 0:

$$y' + y = (1 + e^x)^{-1}$$
; $(1 + x)y' - y = x$; $y' - \frac{y}{x} = x$; $y' - 2xy = 2xe^{-x}$.

- (3) (**) L'accroissement instantané d'une population P est proportionelle à cette population. De plus la population triple tout les 20 ans. En combien de temps double-t-elle?
- (4) (***) Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que $\lim_{x\to\infty} f'(x) + f(x) = 0$. Montrer que $\lim_{x\to\infty} f(x) = 0$ (on pourra résoudre f'(x) + f(x) = g(x)...).
- (5) (*) Déterminer les solutions maximales générales des équations différentielles suivantes:

$$y'' - 9y = 0 \qquad 4y'' + y = 0 \qquad 4y'' - 4y' + y = -2 \quad y^{(3)} + 2y'' + y' = x \\ 2y'' - 3y' + y = 2 - e^x \quad y'' + 9y = \sin(3x) \quad y^{(4)} - y = e^x \qquad y'' + y' + y = e^{x/2}$$

(6) (**) Déterminer les solutions maximales des équations différentielles suivantes avec la condition initiale y(0) = y'(0) = 0:

$$y'' - y' + y = -x$$
 $y'' - 3y' + 2y = (1 - x)e^{-2x}$ $y'' - 5y' + 6y = x$ $y'' + 4y = \cos(x)e^{-x}$.

- (7) (***) Soit l'équation différentielle xy'' + 2(x+1)y' + (x+2)y = 0. En posant z = xy, résoudre cette équation différentielle sur IR. De même pour $y'' + y' \tan(x) y \cos^2(x) = 0$ en posant $t = \sin x$, puis $x^2y'' + y = 0$ en posant $t = \ln x$.
- (8) (**) Pour les deux équations différentielles suivantes, chercher des solutions polynomiales de l'équation, puis en déduire les solutions maximales:

$$(x^2 + x)y'' + (x - 1)y' - y = 1$$
 $x^2y'' - 3xy' + 4y = -x^2$.

- (9) (***) En utilisant le changement de variable y' = u(y) résoudre l'équation différentielle $y'' = y'y^2$ avec y(0) = 1 et y'(0) = 1/3.
- (10) (**) Déterminer une solution maximale de l'équation différentielle y'' + 2xy' + 2y = 2 après avoir vérifié que $y(x) = e^{-x^2}$ est solution.
- (11) (**) Déterminer une solution maximale de l'équation différentielle $(1-x^2)y'' + xy' y = 0$ en effectuant le changement de variable $x = \operatorname{ch} t$.
- (12) (**) Déterminer les éventuelles solutions sur \mathbb{R} de l'équation différentielle $x^2y'' + 4xy' + (2-x^2)y = 1$ en posant $u = x^2y$. Quelle est leur classe?
- (13) (**) Déterminer une solution maximale de l'équation différentielle $2x^2y'' xy' + 2y = 1$.

Feuille n^o 5:

Séries entières

- (1) (*-**) Déterminer le rayon de convergence des séries entières suivantes :

- 1. $\sum_{n} \frac{n^2}{(2n)!} x^n$ 2. $\sum_{n} \cos nx^n$ 3. $\sum_{n} \frac{nx^{2n}}{3^{n+1}}$ 4. $\sum_{n} \frac{(1+\ln n)^{\ln n} x^{3n}}{2^n}$ 5. $\sum_{n} \frac{(2+n)^n}{1+\ln n} x^n$ 6. $\sum_{n} \frac{(-1)^n}{\prod_{i=2}^n \ln i} x^n$ 7. $\sum_{n} a^{\ln n} x^n$, a > 0 8. $\sum_{n} x^{[\sqrt{n}]}$, où $[\cdot]$ partie entière 9. $\sum_{n} (\sin n)^{1/n} x^n$
- (2) (**) Calculer le rayon de convergence de la série entière $\sum_n a_n z^n$ lorsque a_n est donné par:

- 1. $a_n = \frac{(-3)^{\sqrt{n}}}{n!}$ 2. $a_n = \ln(1 + \sqrt{n})$ 3. $a_n = \frac{(n!)^2}{(2n)!}$ 4. $a_n = \tan(\frac{\sqrt{n^2 + 1}\pi}{2})$
- (3) (*) Répondez aux questions suivantes:
 - (a) Donner un exemple de série entière de rayon de convergence 3.
 - (b) Est-il possible de trouver des suites (a_n) et (b_n) telles que $a_n = o(b_n)$ et pourtant $\sum_n a_n z^n$ et $\sum_{n} b_n z^n$ ont le même rayon de convergence?
 - (c) Quel est le lien entre le rayon de convergence des séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} \ln n a_n z^n$?
- (4) (*) Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en termes de fonctions usuelles:
- $\sum_{n\geq 0} \tfrac{2n-1}{n+1} x^n \quad \mathbf{2}. \quad \sum_{n\geq 0} \tfrac{(-1)^n}{(n+k)} x^n, \text{ où } k \in \mathbb{N}^* \quad \mathbf{3}. \quad \sum_{n\geq 0} \tfrac{n+2}{n!} x^n \quad \mathbf{4}. \quad \sum_{n\geq 0} \tfrac{(-1)^n}{2n+1} \, x^{2n+1}.$
- (5) (**) Soit $\sum_{n} a_n x^n$ une série entière de rayon de convergence $\rho > 0$. Montrer que $\sum_{n} \frac{a_n}{n!} x^n$ a pour rayon de convergence $+\infty$.
- (6) (**) Soit R le rayon de convergence de $\sum_n a_n x^n$. Comparer R avec les rayons de convergence des séries suivantes: $a_n \ln(n!) x^n$; $a_n z^{2n}$; $a_n z^{n^2}$.
- (7) (**) Soit (a_n) une suite de réels qui converge vers ℓ .
 - (a) Quel est le rayon de convergence de la série entière $\sum_{n\geq 0} \frac{a_n}{n!} x^n$?
 - (b) On note f la somme de la série entière précédente. Déterminer $\lim_{x\to+\infty} e^{-x} f(x)$.
- (8) (***) Donner un exemple de série entière telle que
 - (a) en tout point du cercle de convergence, la série numérique associée converge.
 - (b) en tout point du cercle de convergence, la série numérique associée diverge.
 - (c) la série numérique associée admet $p \in \mathbb{N}^*$, nombre fixé, points de divergence sur son cercle de convergence.
- (9) (*) Développer en série entière au voisinage de 0 les fonctions suivantes. On précisera le rayon de convergence de la série entière obtenue.

 - 1. $\ln(2-x)$ 2. $\frac{1}{a+x^2}$ avec $a \neq 0$ 3. $(1+x^2)^{-1/2}$ 4. $\frac{e^x}{1-x}$ 5. $\ln(1+2x-3x^2)$ 6. $\frac{\ln(1+x)}{x}$

- (10) (**) Soit f l'application définie sur] 1, 1[par $f(t) = \sin(\alpha \arccos t), \alpha \in \mathbb{R}$.
 - (a) Former une équation différentielle linéaire du second ordre vérifiée par f.
 - (b) Chercher les solutions de l'équation différentielle obtenue qui sont développables en série entière et vérifient y(0) = 1 et y'(0) = 0.
 - (c) En déduire que f est développable en série entière sur]-1,1[, et donner son développement.

- (11) (***) Pour x > -1, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$. Montrer que f est développable en série entière au voisinage de 0 (Indication: remarquer que $\frac{1}{x+n} = \int_0^1 t^{x+n-1} dx$, puis permuter la série et l'intégrale et développer en série entière t^x).
- (12) (**) En utilisant un développement en série entière, montrer que les fonctions suivantes sont de classe C^{∞} :
 - (a) $f(x) = (1 \cos(x))/x$ si $x \neq 0$, f(0) = 0.

 - (b) $g(x) = \cos(\sqrt{|x|})$ si $x \in \mathbb{R}$. (c) $h(x) = \frac{1}{\sin x} \frac{1}{x}$ si $x \in]-\pi, 0[\cup]0, \pi[, h(0) = 0$.
- (13) (**) On considère la série entière $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n(2n+1)} x^{2n+1}$.
 - (a) Quel est son rayon de convergence, que l'on notera R? Y-a-t-il convergence aux bornes de l'intervalle de définition?
 - (b) Sur quel intervalle la fonction f est-elle a priori continue? Démontrer qu'elle est en réalité continue sur [-R, R].
 - (c) Exprimer, au moyen des fonctions usuelles, la somme de la série dérivée sur]-R,R[. En déduire une expression de f sur]-R,R[.
 - (d) Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n(2n+1)}$
- (14) (***) Montrer que $\int_0^1 \frac{\ln(1-t)\ln t}{t} dt = \sum_{n=1}^\infty \frac{1}{n^3}$.
- (15) (*) On considère l'équation différentielle y'' + xy' + y = 1. On cherche l'unique solution de cette équation vérifiant y(0) = y'(0) = 0.
 - (a) Supposons qu'il existe une série entière $f(x) = \sum_{n>0} a_n x^n$ de rayon de convergence strictement positif solution de l'équation. Quelle relation de récurrence doit vérifier la suite (a_n) ?
 - (b) Calculer explicitement a_n pour chaque n. Quel est le rayon de convergence de la série entière obtenue?
 - (c) Exprimer cette série entière à l'aide de fonctions usuelles.
- (16) (**) Déterminer toutes les fonctions développables en série entière au voisinage de 0 qui sont solution de l'équation différentielle: $x^2(1-x)y'' - x(1+x)y' + y = 0$.