Master 2 M.M.M.E.F. 2016 – 2017

Time Series Tutorial n^0 2: How to identify a white noise and generate ARMA and GARCH processes?

The aims of this tutorial is a to provide a first tool to identify a white noise and to generate both the classical ARMA and GARCH processes.

Identification of a white noise: test of portemanteau

	Vizualization of the independence
x = rnorm(50)	Generate a Gaussian white noise.
r = acf(x)	Correlogram of x
· ,	It represents empirical auto-correlations for consecutive lags
	$0, 1, 2, \dots$ Dots represent 95% confidence intervals of Z/\sqrt{n} ,
	where Z is $\mathcal{N}(0,1)$ r.v. and n is the length of x.
	Why? Which test is associated to the confidence interval? Can we consider x as a white noise?
y=x[1:49]+x[2:50]	Generation of a new trajectory. Which kind of process is y ?
v t 1 · t 1	What is the distribution of y ? Compute the correlations of y for any lag.
ry=acf(x)	Correlogram of y . Is it a white noise?
rho = ry $acf[1]$	Computation of the empirical correlation for lag 1.
2 , []	Compare with the theoretical correlation.
	Goodness-of-fit and whiteness tests
x=5*rnorm(50)-2	What is the law of x ?
hist(x,nclass=11)	Histogram which is a first estimation of the density of x . Why?
,	Note the choice of numbers of classes of histogram.
qqnorm(x)	QQplot test (what is it?). Conclusion?
y=3*runif(100)+1	what is the law of y ?
qqnorm(y)	Conclusion?
dn = ks.test(x,"pnorm",-2,5)	Kolmogorov-Smirnov test where the distribution of x is compared to $\mathcal{N}(-2,5^2)$.
() 1	The $p-value$ provides a quantitative way for deciding from a test.
	Classicaly H_0 is accepted when $p-value > 0.05$.
ddn=ks.test(y,"pexp",3)	Test on y. What could we expect?
(J) FF (9)	Test now if y follow a uniform law on $[-1,1]$.
ks.test(x,y)	Test the similarity of the distributions of x and y . Conclusion?
()0 /	v v

ARMA process

In the sequel, two different ways are followed for generating a trajectory of a ARMA process.

X=arima.sim(100,model=list(ar=-.3,ma=.7))Simulation of a trajectory of ARMA[1,1] process.

Write the recurrent equation followed by this process.

Draw this trajectory.

Representation of its correlogram. Conclusion?

Generate another trajectory using directly the recurrent equation. Generate a trajectory of a ARMA[2,2] process (chose the coefficients).

Generate the same trajectory with a noise following a

uniform distribution on [-1, 1].

We generate another trajectory using directly the recurrent equation.

```
\begin{array}{lll} n{=}100; \ m{=}100; \\ epsi{=}3*rnorm(n{+}m) \\ X{=}0 \\ for \ (j \ in \ c(1{:}(n{+}m))) \\ X[j{+}1]{=}{-}0.3*X[j]{+}epsi[j{+}1]{+}0.7*epsi[j] \\ x{=}X[c((m{+}1){:}(n{+}m{+}1))]; \ tsplot(x) \end{array} \qquad Explain \ what \ is \ done \ here.
```

GARCH process

Let X be a trajectory of length 100 of the following process:

$$X_t = \varepsilon_t \times \sigma_t \quad \text{and} \quad \sigma_t^2 = 4 + 0.3 \times X_{t-1}^2 + 0.4 \times \sigma_{t-1}^2,$$

where (ε_t) is a Gaussian standard white noise.

Generate directly this trajectory (as previously for ARMA process let run the routine m = 100 before for being close to a stationary process). Draw this trajectory and the correlogram.

Do the same thing by using the R package ${\tt fGarch}.$