Formes linéaires et espace dual

(1) (*) Soit $E = \mathbb{R}^3$. Montrer que toutes les formes linéaires sur E s'écrivent $f(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$

 $D\acute{e}monstration$. E est un espace vectoriel de dimension 3 et soit $e=(e_1,e_2,e_3)$ une base de E, tout vecteur x de E s'ecrit, de maniere unique, sous la forme $x=\sum_{i=1}^3 x_i e_i$ avec $x_i \in \mathbb{R}$, choisissons l'ensemble $\{1\}$ (ensemble a un seul element), comme base de \mathbb{R}

Soit la proposition : Soient E et $\mathbb R$ deux espaces vectoriels, $e=(e_1,e_2,e_3)$ une base de E et $A=(a_1,a_2,a_3)$ une famille de vecteurs de $\mathbb R$ alors il existe une unique application linéaire : $f:E\longrightarrow R$ telle que $f(e_i)=a_i$ pour tout indice i=1,2,3

Toute forme linéaire f sur E est une application linéaire de E dans R. On la représente alors dans les bases e et $\{1\}$ par :

 $f: E \longrightarrow R$

$$x \longrightarrow f(x) = f(\sum_{i=1}^{3} x_i e_i) = \sum_{i=1}^{3} x_i f(e_i) = x_1 f(e_1) + x_2 f(e_2) + x_3 f(e_3) = x_1 a_1 + x_2 a_2 + x_3 a_3 = (a_1, a_2, a_3) \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$$

(2) (*) Soit E un espace vectoriel muni d'un produit scalaire \langle , \rangle et $x_0 \in E$. Montrer que l'application $u: x \in E \mapsto \langle x_0, x_0 \rangle \langle x, x_0 \rangle$ est une forme linéaire sur E. Déterminer son noyau. Et l'application $x \in E \mapsto \langle x - x_0, x_0 \rangle$?

Démonstration. Montrons que l'application $u(x) = \langle x_0, x_0 \rangle \langle x, x_0 \rangle$, est une application linéaire

Soit $\lambda \in \mathbb{R}$, $u(\lambda x) = \langle x_0, x_0 \rangle \langle \lambda x, x_0 \rangle = \lambda \langle x_0, x_0 \rangle \langle x, x_0 \rangle = \lambda u(x)$

Soit $(x,y) \in \mathbb{R}^2$, $u(x+y) = \langle x_0, x_0 \rangle \langle x+y, x_0 \rangle = \langle x_0, x_0 \rangle \langle x, x_0 \rangle + \langle x_0, x_0 \rangle \langle y, x_0 \rangle = u(x) + u(y)$ C'est une forme linéaire d'après la propriété de bilinéarité du produit scalaire.

Détermination du noyau $\ker u$

$$u(x) = \langle x_0, x_0 \rangle \langle x, x_0 \rangle$$

 $\ker u = \{x \in E, \langle x_0, x_0 \rangle \langle x, x_0 \rangle = 0\} = \{x \in E, \langle x, x_0 \rangle = 0\} = \{x_0^{\perp}\} \text{ c'est un hyperplan}.$

si $x_0 = 0$ alors $\ker u = E$

 $\ker u = \{x \in E, 0 = 0\}$ alors u(x) = 0, donc $\ker u = E$

 $x \in E \mapsto \langle x - x_0, x_0 \rangle$

Soit $v(x) = \langle x - x_0, x_0 \rangle$

 $v(0) = \langle -x_0, x_0 \rangle = -||x_0||^2 \neq 0 \text{ si } x_0 \neq 0$

si $x_0 \neq 0,$ v n'est pas une forme lineaire

si $x_0 \doteq 0$, $v(x) = 0_E$ qui est une forme lineaire.

(3) (*) Soit $E = \mathcal{C}^0([0,1])$, ensemble des fonctions continues sur [0,1]. Montrer que $f \in E \mapsto f(0) + \int_0^1 t f(t) dt$ est une forme linéaire sur E.

Démonstration. Pour $\lambda \in R$ et $f,g \in E$, et avec $u(f) = f(0) + \int_0^1 t \, f(t) dt \in \mathbb{R}$, on a bien $u(\lambda f) = \lambda u(f)$ et u(f+g) = u(f) + u(g) d'après les propriétés de linéarité de l'intégrale.

(4) (**) Soit E un espace vectoriel muni d'un produit scalaire \langle , \rangle , f et g deux formes linéaires non nulles sur E. Montrer que l'application f+g est une forme linéaire sur E. Existe-t-il une relation entre le noyau de f+g et ceux de f et g?

Démonstration. Soit $\lambda \in R$ et $x, y \in E$,

 $(f+g)(\lambda x+y)=f(\lambda x+y)+g(\lambda x+y)=\lambda f(x)+f(y)+\lambda g(x)+g(y)=\lambda (f+g)(x)+(f+g)(y)$

f+g est une forme linéaire.

 $\ker f=\{x\in E, f(x)=0\}$

 $\ker g = \{ x \in E, g(x) = 0 \}$

 $\ker(f+g) = \{x \in E, f(x) = -g(x)\}\$

Soit $x \in \ker f \cap \ker g$ alors $f(x) = -g(x) = 0 \Longrightarrow x \in \ker(f+g)$

conclusion : $(\ker f \cap \ker g) \subset \ker(f+g)$

Si $dimE = n < \infty$ alors $dim \ker(f+g) = n-1$ si $f+g \neq 0$ et si f+g=0 alors $dim(\ker f+g) = 1$

Supposons f+g \neq 0 dim ker f = n-1 = dim ker g

 $((\ker f \cap \ker g)) \leq n-1$

1

on verra que $dim(\ker f \cap \ker q) > n-1$ $dim(\ker f \cap \ker g) = n - 2$ si $(\ker f \neq \ker g)$ comme f et g sont proportionnelles; les deux noyaux reviennent au même.

(5) (***) Soit E l'ensemble des suites numériques $(u_n)_{n\in\mathbb{N}}$. Montrer que $F = \{(u_n)_{n\in\mathbb{N}} \in E, \lim_{n\to\infty} 2^n | u_{n+1} - u_{n+1} = 0\}$ $|u_n|=0$ est un s.e.v. de E. Montrer que dim $F=\infty$. Montrer que l'application qui a $(u_n)\in F$ associe $\lim_{n \in \mathbb{N}} u_n$ existe et est une forme linéaire de F.

 $D\acute{e}monstration$. On montre d'abord que F est un e.v. Pour cela on montre que F est un s.e.v. de E l'ensemble des suites numériques. Ceci est vrai car :

1/ la suite nulle appartient à F;

2/ pour tout $\lambda \in \mathbb{R}$ et toute suite $(u_n) \in E$, il est clair que $(\lambda u_n) \in F$ $\operatorname{car} \lim_{n \to \infty} 2^{n} |\lambda(u_{n+1} - u_n)| = \lim_{n \to \infty} 2^{n} |\lambda| |u_{n+1} - u_n| = |\lambda| = 0;$

 $3/ \operatorname{si}(u_n)$ et (v_n) sont deux suites de E, on sait que

 $\lim_{n \to \infty} 2^n |(u_{n+1} + v_{n+1}) - (u_n + v_n)| =$

 $= \lim_{n \to \infty} 2^{n} |(u_{n+1} - u_{n}) + (v_{n+1} - (v_{n}))| =$ $= \lim_{n \to \infty} 2^{n} |u_{n+1} - u_{n}| + \lim_{n \to \infty} 2^{n} |v_{n+1} - v_{n}| = 0$

Pour montrer que F est bien un s.e.v. de E, il suffit de considérer l'application $f:(u_n)\in E$ $u_n=e^{-n}$. $\lim_{n\longrightarrow\infty}2^n|u_{n+1}-u_n|=\lim_{n\longrightarrow\infty}2^n|e^{-(n+1)}-e^{-n}|=0$

De même on pourra prendre \forall k \in N avec $k \geq 3$, les suites $u_n = k^{-n}$

Cette application f est clairement une forme linéaire qui existe

Pour montrer que $\dim F = \infty$ il suffit de montrer que $\dim E = \infty$ car on sait que F est un hyperplan de E. Or les suite $(u_n^{(k)})$ telles que $u_n^{(k)}=(k)^{-n}$ pour $n\in\mathbb{N}$ appartiennent à E . De plus ces suites sont libres entre elles.