Cours de Probabilités

Licence M.I.A.S.H.S. Première Année

Année 2019-2020

3.1 Définitions et propriétés générales

Définition

Soit (Ω, A) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de A.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 0 \\ \{X \le x\} = \{(F, F)\} & \text{pour } 0 \le x < 1 \\ \{X \le x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \le x < 2 \\ \{X \le x\} = \Omega & \text{pour } 2 \le x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

Exemple :
$$\Omega = \{(P,P), (P,F), (F,F), (F,P)\}$$
, $\mathcal{A} = \mathcal{P}(\Omega)$, X nombre de P. Pour chaque $\omega \in \Omega$, $X(\omega) \in \{0,1,2\} = I$, par exemple $X(\{(P,F)\}) = 1$.

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F,F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F,F),(P,F),(F,P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

Exemple :
$$\Omega = \{(P, P), (P, F), (F, F), (F, P)\}$$
, $\mathcal{A} = \mathcal{P}(\Omega)$, X nombre de P. Pour chaque $\omega \in \Omega$, $X(\omega) \in \{0, 1, 2\} = I$, par exemple $X(\{(P, F)\}) = 1$.

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F, F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F,F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F,F),(P,F),(F,P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F,F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F,F),(P,F),(F,P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 0 \\ \{X \le x\} = \{(F, F)\} & \text{pour } 0 \le x < 1 \\ \{X \le x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \le x < 2 \\ \{X \le x\} = \Omega & \text{pour } 2 \le x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 0 \\ \{X \le x\} = \{(F, F)\} & \text{pour } 0 \le x < 1 \\ \{X \le x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \le x < 2 \\ \{X \le x\} = \Omega & \text{pour } 2 \le x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F, F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

3.1 Définitions et propriétés générales

Définition

Soit (Ω, \mathcal{A}) un espace probabilisable. On appelle variable aléatoire X à valeurs dans $I \subset \mathbb{R}$, une application de $\Omega \to I$ telle que pour tout $x \in \mathbb{R}$, l'événement

$$\{X \le x\} = \{\omega \in \Omega \text{ tel que } X(\omega) \le x\} = X^{-1}(]-\infty,x]$$

soit un événement de \mathcal{A} .

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < 0 \\ \{X \leq x\} = \{(F, F)\} & \text{pour } 0 \leq x < 1 \\ \{X \leq x\} = \{(F, F), (P, F), (F, P)\} & \text{pour } 1 \leq x < 2 \\ \{X \leq x\} = \Omega & \text{pour } 2 \leq x \end{cases}$$

Définition

- Si $I=\{x_j\}_{j\in J}$ avec $J\subset \mathbb{N}$ (par exemple $I=\{0,1\},\ I=\mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples

• Soit $\Omega = \{1, \dots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \dots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

⇒ X variable aléatoire

• Soit $\Omega = [0,1]$, $\mathcal{A} = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 3 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...$), X peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \dots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \dots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $\mathcal{A} = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$.

On a
$$\begin{cases} \begin{array}{ll} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{array} \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \dots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \dots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...$), X peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $\mathcal{A} = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i + j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < -1 \\ \{X \le x\} = [0, (x+1)/2] & \text{pour } -1 \le x < 1 \\ \{X \le x\} = [0, 1] & \text{pour } 1 \le x \end{cases}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

$$\text{On a} \left\{ \begin{array}{ll} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{array} \right.$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 \Longrightarrow X variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\left\{ \begin{array}{ll} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{array} \right.$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...),\ X$ peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i+j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0, 1]$, $A = \mathcal{B}([0, 1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1, 1].

On a
$$\left\{ \begin{array}{ll} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{array} \right.$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...$), X peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i + j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{cases}$$

$$\implies X \text{ variable aléatoire.}$$

Définition

- Si $I = \{x_j\}_{j \in J}$ avec $J \subset \mathbb{N}$ (par exemple $I = \{0, 1\}$, $I = \mathbb{Z},...$), X est appelée variable aléatoire discrète.
- Si I est une union dénombrable de "vrais" intervalles de \mathbb{R} (par exemple $I=[0,1],\ I=\mathbb{R}^+,...$), X peut être une variable aléatoire continue.

Exemples:

• Soit $\Omega = \{1, \ldots, 6\}^2$, $A = \mathcal{P}(\Omega)$ et X((i,j)) = i + j pour $(i,j) \in \Omega$. X est à valeurs dans $I = \{2, \ldots, 12\}$.

On a
$$\begin{cases} \{X \le x\} = \emptyset & \text{pour } x < 2 \\ \{X \le x\} = \{(1,1)\} & \text{pour } 2 \le x < 3 \\ \{X \le x\} = \{(1,1),(1,2),(2,1)\} & \text{pour } 3 \le x < 4 \\ \dots & \dots & \dots \end{cases}$$

 $\Longrightarrow X$ variable aléatoire.

• Soit $\Omega = [0,1]$, $A = \mathcal{B}([0,1])$ et X tel que $X(\omega) = 2\omega - 1$ pour $\omega \in \Omega$. X est à valeurs dans I = [-1,1].

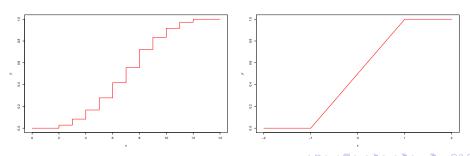
On a
$$\begin{cases} \{X \leq x\} = \emptyset & \text{pour } x < -1 \\ \{X \leq x\} = [0, (x+1)/2] & \text{pour } -1 \leq x < 1 \\ \{X \leq x\} = [0, 1] & \text{pour } 1 \leq x \end{cases}$$

$$\implies X \text{ variable aléatoire.}$$

Remarque: Si $A = \mathcal{P}(\Omega)$, $\{X \leq x\} \in A$ pour tout $x \in \mathbb{R}$: toute application est une v.a.

Définition

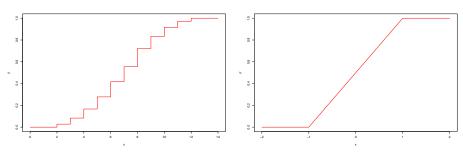
Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilités et X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I. On appelle fonction de répartition de X la fonction $F_X : \mathbb{R} \to [0, 1]$ telle que $F_X(x) = \mathbb{P}(X \le x)$, pour $x \in \mathbb{R}$.



Remarque : Si $A = \mathcal{P}(\Omega)$, $\{X \leq x\} \in A$ pour tout $x \in \mathbb{R}$: toute application est une v.a.

Définition

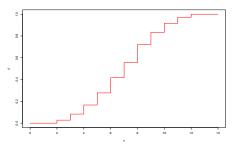
Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilités et X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I. On appelle fonction de répartition de X la fonction $F_X : \mathbb{R} \to [0, 1]$ telle que $F_X(x) = \mathbb{P}(X \le x)$, pour $x \in \mathbb{R}$.

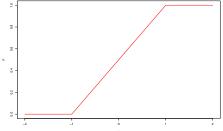


Remarque: Si $A = \mathcal{P}(\Omega)$, $\{X \leq x\} \in A$ pour tout $x \in \mathbb{R}$: toute application est une v.a.

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilités et X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I. On appelle fonction de répartition de X la fonction $F_X : \mathbb{R} \to [0, 1]$ telle que $F_X(x) = \mathbb{P}(X \le x)$, pour $x \in \mathbb{R}$.

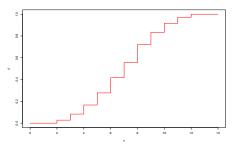


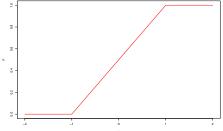


Remarque: Si $A = \mathcal{P}(\Omega)$, $\{X \leq x\} \in A$ pour tout $x \in \mathbb{R}$: toute application est une v.a.

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilités et X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I. On appelle fonction de répartition de X la fonction $F_X : \mathbb{R} \to [0, 1]$ telle que $F_X(x) = \mathbb{P}(X \le x)$, pour $x \in \mathbb{R}$.

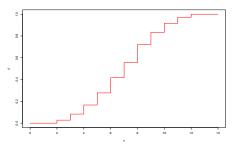


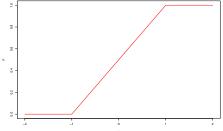


Remarque: Si $A = \mathcal{P}(\Omega)$, $\{X \leq x\} \in A$ pour tout $x \in \mathbb{R}$: toute application est une v.a.

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilités et X une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I. On appelle fonction de répartition de X la fonction $F_X : \mathbb{R} \to [0, 1]$ telle que $F_X(x) = \mathbb{P}(X \le x)$, pour $x \in \mathbb{R}$.





- **1** F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{X \to -\infty} F_X(x) = 0 \text{ et } \lim_{X \to +\infty} F_X(x) = 1$

Démonstration

- - $\implies F_X(x) \leq F_X(y).$
- ② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pou tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.
 - Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels que lonque telle que $\lim_{n\to\infty}x_n=\infty$. Si $A_n=\{X\leq x_n\}, \lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\lim_{n\to\mathbb{N}}F_X(x_n)=\mathbb{P}(\Omega)=1$. D'où $\lim_{n\to\infty}F_X(x)=1$.
 - On a $F_X(x) = 1 \mathbb{P}(X > x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n = \{X > x_n\} \implies \lim_{x \to -\infty} \mathbb{P}(X > x) = 1 \implies \lim_{x \to -\infty} F_X(x) = 0$.
- ① $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 \mathbb{P}(C) = F_X(b)$ on

- \bullet F_{\times} est une fonction croissante sur \mathbb{R} .

Démonstration

$$\implies F_X(x) \leq F_X(y).$$

② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.

Soit
$$(x_n)_{n\in\mathbb{N}}$$
 une suite croissante de reels que conque telle que $\lim_{n\to\infty} x_n = \infty$. Si $A_n = \{X \le x_n\}, \lim_{n\to\mathbb{N}} \mathbb{P}(A_n) = \lim_{n\to\mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1$. D'où $\lim_{n\to\infty} F_X(x) = 1$.

On a $F_X(x) = 1 - \mathbb{P}(X > x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n = \{X > x_n\} \Longrightarrow \lim_{x \to -\infty} \mathbb{P}(X > x) = 1 \Longrightarrow \lim_{x \to \infty} F_X(x) = 0$.

③ $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 - \mathbb{P}(C) = F_X(b)$ on

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .

Démonstration

$$\implies F_X(x) \leq F_X(y).$$

- ② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.
 - Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1. \text{ D'où } \lim_{x \to +\infty} F_X(x) = 1.$$

- On a $F_X(x)=1-\mathbb{P}(X>x)$. Meme preuve pour (x_n) suite decroissante tendant vers $-\infty$ et $A_n=\{X>x_n\}$ \Longrightarrow $\lim_{x\to -\infty}\mathbb{P}(X>x)=1$ \Longrightarrow \lim $F_X(x)=0$.
- (3) $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 \mathbb{P}(C) = F_X(b)$ on obtaint $\mathbb{P}(B) = F_X(b) F_X(a)$.

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to -\infty} F_X(x) = 0 \text{ et } \lim_{x\to +\infty} F_X(x) = 1.$

Démonstration.

$$\implies F_X(x) \leq F_X(y)$$

② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.

Soit
$$(x_n)_{n\in\mathbb{N}}$$
 une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1.$$
 D'où $\lim_{x \to +\infty} F_X(x) = 1.$
On a $F_X(x) = 1 - \mathbb{P}(X > x)$ Même preuve pour (x_n) suite décroissante tendant

on a $F_X(x)=1-\mathbb{P}(X>X)$. Nieme preuve pour (x_n) suite decroissante tendant vers $-\infty$ et $A_n=\{X>x_n\}\Longrightarrow \lim_{x\to -\infty}\mathbb{P}(X>x)=1\Longrightarrow \lim_{x\to \infty}F_X(x)=0$.

3 $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 - \mathbb{P}(C) = F_X(b)$ on obtaint $\mathbb{P}(B) = F_X(b) - F_Y(a)$

- **1** F_x est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to -\infty} F_X(x) = 0 \text{ et } \lim_{x\to +\infty} F_X(x) = 1.$

Démonstration.

$$\implies$$
 $F_X(x) \leq F_X(y)$.

- ② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.
 - Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1. \text{ D'où } \lim_{x \to +\infty} F_X(x) = 1.$$

- On a $F_X(x)=1-\mathbb{P}(X>x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n=\{X>x_n\}\Longrightarrow \lim_{x\to -\infty}\mathbb{P}(X>x)=1\Longrightarrow \lim_{x\to \infty}F_X(x)=0$.
- ② $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 \mathbb{P}(C) = F_X(b)$ on obtient $\mathbb{P}(B) = F_X(b) F_X(a)$.

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .

Démonstration.

- - \implies $F_X(x) \leq F_X(y)$.
- ② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1. \text{ D'où } \lim_{\substack{n \to \infty \\ x \to +\infty}} F_X(x) = 1.$$

- On a $F_X(x)=1-\mathbb{P}(X>x)$. Meme preuve pour (x_n) suite decroissante tendant vers $-\infty$ et $A_n=\{X>x_n\}\Longrightarrow \lim_{x\to -\infty}\mathbb{P}(X>x)=1\Longrightarrow \lim_{x\to \infty}F_X(x)=0$.
- ③ $A = \{X \le a\}$, $B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a)$, $1 \mathbb{P}(C) = F_X(b)$ on obtient $\mathbb{P}(B) = F_X(b) F_X(a)$.

- \bullet F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to -\infty} F_X(x) = 0 \text{ et } \lim_{x\to +\infty} F_X(x) = 1.$

Démonstration.

$$\implies$$
 $F_X(x) \leq F_X(y)$.

② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1. \text{ D'où } \lim_{\substack{n \to \infty \\ x \to +\infty}} F_X(x) = 1.$$

On a $F_X(x) = 1 - \mathbb{P}(X > x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n = \{X > x_n\} \Longrightarrow \lim_{x \to -\infty} \mathbb{P}(X > x) = 1 \Longrightarrow \lim_{x \to \infty} F_X(x) = 0$.

3 $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 - \mathbb{P}(C) = F_X(b)$ on obtient $\mathbb{P}(B) = F_X(b) - F_X(a)$.

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to -\infty} F_X(x) = 0 \text{ et } \lim_{x\to +\infty} F_X(x) = 1.$

Démonstration.

$$\implies$$
 $F_X(x) \leq F_X(y)$.

② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n \in \mathbb{N}$, alors $\lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n)$.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty} x_n = \infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to N} \mathbb{P}(A_n) = \lim_{n \to N} F_X(x_n) = \mathbb{P}(\Omega) = 1.$$
 D'où $\lim_{x \to +\infty} F_X(x) = 1.$

On a $F_X(x) = 1 - \mathbb{P}(X > x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n = \{X > x_n\} \Longrightarrow \lim_{x \to -\infty} \mathbb{P}(X > x) = 1 \Longrightarrow \lim_{x \to \infty} F_X(x) = 0$.

D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a)$, $1 - \mathbb{P}(C) = F_X(b)$ on

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to -\infty} F_X(x) = 0 \text{ et } \lim_{x\to +\infty} F_X(x) = 1.$

Démonstration.

$$\implies$$
 $F_X(x) \leq F_X(y)$.

② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels quelconque telle que $\lim_{n\to\infty}x_n=\infty$. Si

$$A_n = \{X \le x_n\}, \lim_{n \to \mathbb{N}} \mathbb{P}(A_n) = \lim_{n \to \mathbb{N}} F_X(x_n) = \mathbb{P}(\Omega) = 1. \text{ D'où } \lim_{\substack{n \to \infty \\ x \to +\infty}} F_X(x) = 1.$$

On a $F_X(x)=1-\mathbb{P}(X>x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n=\{X>x_n\}\Longrightarrow \lim_{x\to -\infty}\mathbb{P}(X>x)=1\Longrightarrow \lim_{x\to \infty}F_X(x)=0$.

3 $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 - \mathbb{P}(C) = F_X(b)$ on

- **1** F_{\times} est une fonction croissante sur \mathbb{R} .
- $\lim_{x\to-\infty} F_X(x) = 0 \text{ et } \lim_{x\to+\infty} F_X(x) = 1.$

Démonstration.

$$\implies$$
 $F_X(x) \leq F_X(y)$.

- ② On a montré que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événement de \mathcal{A} tel que $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$, alors $\lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\mathbb{P}\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)$.
 - Soit $(x_n)_{n\in\mathbb{N}}$ une suite croissante de réels que lonque telle que $\lim_{n\to\infty}x_n=\infty$. Si $A_n=\{X\leq x_n\}, \lim_{n\to\mathbb{N}}\mathbb{P}(A_n)=\lim_{n\to\mathbb{N}}F_X(x_n)=\mathbb{P}(\Omega)=1$. D'où $\lim_{n\to\infty}F_X(x)=1$.
 - On a $F_X(x) = 1 \mathbb{P}(X > x)$. Même preuve pour (x_n) suite décroissante tendant vers $-\infty$ et $A_n = \{X > x_n\} \Longrightarrow \lim_{x \to -\infty} \mathbb{P}(X > x) = 1 \Longrightarrow \lim_{x \to -\infty} F_X(x) = 0$.
 - **3** $A = \{X \le a\}, B = \{a < X \le b\}$ et $C = \{X > b\}$. Alors A, B et C partition de Ω . D'où $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1$. Comme $\mathbb{P}(A) = F_X(a), 1 \mathbb{P}(C) = F_X(b)$ on obtient $\mathbb{P}(B) = F_X(b) F_X(a)$.

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité de X

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important:
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 1 si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 0 si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega,\mathcal{A},\mathbb{P})$ et à valeurs dans I .

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité de X

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important: ([0,1],
$$\mathcal{B}([0,1])$$
) X nombre pris uniformément dans [0,1]. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 1 si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 0 si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important:
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$
$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 1 \text{ si } x \ge 0$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 0 \text{ si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important:
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 1 \text{ si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 0 \text{ si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important: ([0,1],
$$\mathcal{B}([0,1])$$
) X nombre pris uniformément dans [0,1]. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 1 si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, \text{ 0 si } x \le 0, \text{ 0 si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important:
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

 ${
m I\hspace{-.1em}P}$: même probabilité pour tout intervalle de même taille

$$\implies \mathbb{P}(X \in [a,b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 1 \text{ si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 0 \text{ si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important :
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

 ${
m I\hspace{-.1em}P}$: même probabilité pour tout intervalle de même taille

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 1 \text{ si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 0 \text{ si } x \ge 1$$

Soit X une v.a. sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans I.

- Si X est une v.a. discrète $(I = \{x_j\}_{i \in J})$, on appelle loi de probabilité de X l'application $\mathbb{P}_X : \{x_j\}_{j \in J} \to \mathbb{P}(X = x_j) = \mathbb{P}_X(x_j)$.
- S'il existe $f_X : \mathbb{R} \to [0, +\infty[$ telle que $F_X(x) = \int_{-\infty}^x f_X(t) dt \ \forall x \in \mathbb{R},$ X est alors appelée v.a. continue et f_X densité de probabilité $de\ X$.

Remarque : termes plus précis : v.a. absolument continue et f_X densité par rapport à la mesure de Lebesgue.

Important :
$$([0,1],\mathcal{B}([0,1]))$$
 X nombre pris uniformément dans $[0,1]$. $\Longrightarrow X(\omega) = \omega$ pour tout $\omega \in [0,1]$.

$$\implies \mathbb{P}(X \in [a, b]) = b - a \text{ pour } 0 \le a \le b \le 1$$

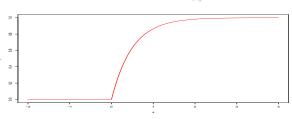
$$\implies F_X(x) = x \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 1 \text{ si } x \ge 1$$

$$\implies f_X(x) = 1 \text{ pour } 0 \le x \le 1, 0 \text{ si } x \le 0, 0 \text{ si } x \ge 1$$

- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{j \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration

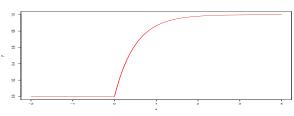
- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_i\}$ et $(\{X = x_i\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt doù \int_{-\infty}^{+\infty} f_X(t) dt = 1$



- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{i \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration

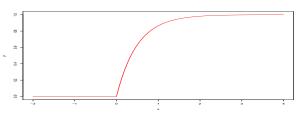
- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_j\}$ et $(\{X = x_j\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt$ d'où $\int_{-\infty}^{+\infty} f_X(t) dt = 1$



- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{i \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration.

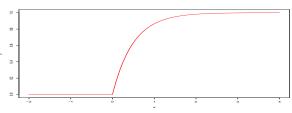
- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_j\}$ et $(\{X = x_j\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt$ d'où $\int_{-\infty}^{+\infty} f_X(t) dt = 1$



- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{i \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration.

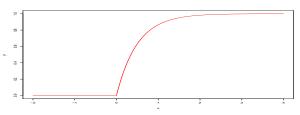
- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_j\}$ et $(\{X = x_j\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt$ d'où $\int_{-\infty}^{+\infty} f_X(t) dt = 1$



- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{j \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration.

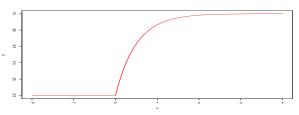
- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_j\}$ et $(\{X = x_j\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt$ d'où $\int_{-\infty}^{+\infty} f_X(t) dt = 1$



- Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$ alors $\sum_{j \in J} \mathbb{P}(X = x_j) = 1$.
- Si X v.a. continue alors $\int_{-\infty}^{+\infty} f_X(t) dt = 1$.

Démonstration.

- Formule des probabilités totales : $\Omega = \bigcup_{i \in J} \{X = x_j\}$ et $(\{X = x_j\})_i$ partition...
- $\lim_{x\to\infty} F_X(x) = 1 = \lim_{x\to\infty} \int_{-\infty}^x f_X(t) dt$ d'où $\int_{-\infty}^{+\infty} f_X(t) dt = 1$



Cours de Probabilités

Licence M.I.A.S.H.S. Première Année

Année 2019-2020

Propriété

Si $X: \Omega \to (x_j)_{j \in J}$, $J \subset \mathbb{N}^*$ est une v.a. discrète, alors

- F_X est une fonction en escalier sur \mathbb{R} , avec sauts en les x_j .
- $\mathbb{P}(X = x_j) = F_X(x_j) \lim_{x \to x_j^-} F_X(x)$ pour tout $j \in J$.

Démonstration.

• pour tout $x \in \mathbb{R}$,

$$\begin{array}{ll} \text{ si } \inf_{j \in J} x_j > -\infty \text{ et } x < \inf_{j \in J} x_j & \Longrightarrow F_X(x) = 0 \\ \text{ ou } & \\ \exists j_1 \in J, \ x_{j_1} \leq x < \min(x_j, \, x_j > x_{j_1}) & \Longrightarrow F_X(x) = \sum_{x_j \leq x_{j_1}} \mathbb{P}(X = x_j) \\ \text{ ou } & \text{ ou } & \\ \text{ si } \sup_{j \in J} x_j < +\infty \text{ et } x > \sup_{j \in J} x_j & \Longrightarrow F_X(x) = 1 \end{array}$$

Ce sont les seules valeurs pouvant être prises par F_X

• On a
$$F_X(x_j) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$$
, $\lim_{x \to x_k} F_X(x) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$...

Propriété

Si $X: \Omega \to (x_j)_{j \in J}$, $J \subset \mathbb{N}^*$ est une v.a. discrète, alors

- F_X est une fonction en escalier sur \mathbb{R} , avec sauts en les x_j .
- $\mathbb{P}(X=x_j) = F_X(x_j) \lim_{x \to x_j^-} F_X(x)$ pour tout $j \in J$.

Démonstration.

• pour tout $x \in \mathbb{R}$,

$$\begin{array}{ll} \text{si } \inf_{j \in J} x_j > -\infty \text{ et } x < \inf_{j \in J} x_j & \Longrightarrow F_X(x) = 0 \\ \text{ou} & \\ \exists j_1 \in J, \ x_{j_1} \leq x < \min(x_j, \, x_j > x_{j_1}) & \Longrightarrow F_X(x) = \sum_{x_j \leq x_{j_1}} \mathbb{P}(X = x_j) \\ \text{ou} & \text{ou} & \\ \text{si } \sup_{j \in J} x_j < +\infty \text{ et } x > \sup_{j \in J} x_j & \Longrightarrow F_X(x) = 1 \end{array}$$

Ce sont les seules valeurs pouvant être prises par F_X

• On a
$$F_X(x_j) = \sum_{x_k \le x_j} \mathbb{P}(X = x_k)$$
, $\lim_{x \to x_i^-} F_X(x) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$...

Propriété

Si $X: \Omega \to (x_j)_{j \in J}$, $J \subset \mathbb{N}^*$ est une v.a. discrète, alors

- F_X est une fonction en escalier sur \mathbb{R} , avec sauts en les x_j .
- $\mathbb{P}(X = x_j) = F_X(x_j) \lim_{x \to x_j^-} F_X(x)$ pour tout $j \in J$.

Démonstration.

• pour tout $x \in \mathbb{R}$,

$$\left\{ \begin{array}{ll} \text{si inf}_{j \in J} \, x_j > -\infty \text{ et } x < \inf_{j \in J} x_j & \Longrightarrow F_X(x) = 0 \\ \text{ou} & \text{ou} \\ \\ \exists j_1 \in J, \ x_{j_1} \leq x < \min(x_j, \, x_j > x_{j_1}) & \Longrightarrow F_X(x) = \sum_{x_j \leq x_{j_1}} \mathbb{P}(X = x_j) \\ \text{ou} & \text{ou} \\ \text{si } \sup_{j \in J} x_j < +\infty \text{ et } x > \sup_{j \in J} x_j & \Longrightarrow F_X(x) = 1 \end{array} \right.$$

Ce sont les seules valeurs pouvant être prises par F_X .

• On a
$$F_X(x_j) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$$
, $\lim_{x \to x_k^-} F_X(x) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$...

Propriété

Si $X: \Omega \to (x_j)_{j \in J}$, $J \subset \mathbb{N}^*$ est une v.a. discrète, alors

- F_X est une fonction en escalier sur \mathbb{R} , avec sauts en les x_j .
- $\mathbb{P}(X = x_j) = F_X(x_j) \lim_{x \to x_j^-} F_X(x)$ pour tout $j \in J$.

Démonstration.

• pour tout $x \in \mathbb{R}$,

$$\left\{\begin{array}{ll} \text{si } \inf_{j\in J} x_j > -\infty \text{ et } x < \inf_{j\in J} x_j & \Longrightarrow F_X(x) = 0 \\ \text{ou} & \text{ou} \\ \\ \exists j_1 \in J, \ x_{j_1} \leq x < \min(x_j, \, x_j > x_{j_1}) & \Longrightarrow F_X(x) = \sum_{x_j \leq x_{j_1}} \mathbb{P}(X = x_j) \\ \text{ou} & \text{ou} \\ \text{si } \sup_{j\in J} x_j < +\infty \text{ et } x > \sup_{j\in J} x_j & \Longrightarrow F_X(x) = 1 \end{array}\right.$$

Ce sont les seules valeurs pouvant être prises par F_X .

• On a $F_X(x_j) = \sum_{x_k \le x_j} \mathbb{P}(X = x_k)$, $\lim_{x \to x_i^-} F_X(x) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$...

Propriété

Si $X: \Omega \to (x_j)_{j \in J}$, $J \subset \mathbb{N}^*$ est une v.a. discrète, alors

- F_X est une fonction en escalier sur \mathbb{R} , avec sauts en les x_j .
- $\mathbb{P}(X = x_j) = F_X(x_j) \lim_{x \to x_j^-} F_X(x)$ pour tout $j \in J$.

Démonstration.

• pour tout $x \in \mathbb{R}$,

$$\left\{\begin{array}{ll} \text{si } \inf_{j\in J} x_j > -\infty \text{ et } x < \inf_{j\in J} x_j & \Longrightarrow F_X(x) = 0 \\ \text{ou} & \text{ou} \\ \\ \exists j_1 \in J, \ x_{j_1} \leq x < \min(x_j, \, x_j > x_{j_1}) & \Longrightarrow F_X(x) = \sum_{x_j \leq x_{j_1}} \mathbb{P}(X = x_j) \\ \text{ou} & \text{ou} \\ \text{si } \sup_{j\in J} x_j < +\infty \text{ et } x > \sup_{j\in J} x_j & \Longrightarrow F_X(x) = 1 \end{array}\right.$$

Ce sont les seules valeurs pouvant être prises par F_X .

• On a $F_X(x_j) = \sum_{x_k \le x_j} \mathbb{P}(X = x_k)$, $\lim_{x \to x_i^-} F_X(x) = \sum_{x_k < x_j} \mathbb{P}(X = x_k)$...

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration.

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers $x, A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration.

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers $x, A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Exemple: X de loi exponentielle, $\mathbb{P}\left(0 \le X \le \frac{\ln 2}{\lambda^4}\right) = 1 - \mathbb{P}\left(\frac{\ln 2}{\mathbb{E}}\right) = 1 - \mathbb{E}\left(\frac{\ln 2}{\mathbb{E}}\right) = 1 - \mathbb{E}$

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration.

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \leq x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \leq x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration.

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Exemple: X de loi exponentielle, $\mathbb{P}\left(0 \le X \le \frac{\ln 2}{\lambda^*}\right) = 1 - e^{-\ln 2} = 0 = \frac{1}{2}$

Si X est une v.a. continue de densité de probabilité f_X alors :

- F_X continue sur \mathbb{R} et $F_X'(x) = f_X(x)$ pour presque tout $x \in \mathbb{R}$.
- $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$, pour tout $-\infty \le a < b \le +\infty$.
- $\mathbb{P}(X = x) = 0$ pour tout $x \in \mathbb{R}$.

Démonstration.

- Si x telle que f_X continue en x on définit G une primitive de f_X alors $F_X(x) = \int_{-\infty}^x f_X(t) dt = \lim_{u \to -\infty} \left[G(t) \right]_u^x = G(x) \lim_{u \to \infty} G(u)$, d'où $F_X'(x) = f_X(x)$.
- $\mathbb{P}(a < X \le b) = F_X(b) F_X(a) = \int_{-\infty}^a f_X(t) dt + \int_a^b f_X(t) dt \int_{-\infty}^a f_X(t) dt$ relation de Chasles, donc $\mathbb{P}(a < X \le b) = \int_a^b f_X(t) dt$.
- Si $A_n = \{X \le x_n\}$ avec (x_n) suite strictement croissante tendant vers x, $A_n \subset A_{n+1}$ donc $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \mathbb{P}(X < x)$. Mais $\mathbb{P}(X = x) = \mathbb{P}(X \le x) \mathbb{P}(X < x)$ donc $\mathbb{P}(X = x) = F_X(x) \lim_{n \to \infty} F_X(x_n)$. Comme F_X est continue, $\lim_{n \to \infty} F_X(x_n) = F_X(x)$ soit $\mathbb{P}(X = x) = 0$.

Exemple: X de loi exponentielle, $\mathbb{P}\left(0 \le X \le \frac{\ln 2}{\lambda^*}\right) = 1 - e^{-\ln 2} = 0 = \frac{1}{2}$

Si X une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I et $h: I \to \mathbb{R}$ continue par morceaux,

$$\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega) \quad \text{si cela existe!}.$$

Remarque : Cette formule nécessite des connaissances de L3...

Définition

• Si X v.a. discrète à valeurs dans $I=\{x_j\}_{j\in J}$), l'espérance de X est

$$\mathbb{E}[X] = \sum_{i=1}^{N} x_j \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |x_j| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X, l'espérance de X est

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |t| \, f_X(t) \, dt < \infty.$$

Si X une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I et $h: I \to \mathbb{R}$ continue par morceaux,

$$\mathbb{E}\big[h(X)\big] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega) \qquad \text{si cela existe ! !.}$$

Remarque : Cette formule nécessite des connaissances de L3...

Définition

ullet Si X v.a. discrète à valeurs dans $I=\{x_j\}_{j\in J}$), l'espérance de X est

$$\mathbb{E}[X] = \sum_{i \in I} x_j \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |x_j| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X, l'espérance de X est

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |t| \, f_X(t) \, dt < \infty.$$

Si X une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I et $h: I \to \mathbb{R}$ continue par morceaux,

$$\mathbb{E}\big[h(X)\big] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega) \qquad \text{si cela existe} \,! \,!.$$

Remarque : Cette formule nécessite des connaissances de L3...

Définition

• Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$, l'espérance de X est

$$\mathbb{E}[X] = \sum_{i \in I} x_i \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |x_j| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X, l'espérance de X est

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |t| \, f_X(t) \, dt < \infty.$$

Si X une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I et $h: I \to \mathbb{R}$ continue par morceaux,

$$\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega) \quad \text{si cela existe!}.$$

Remarque: Cette formule nécessite des connaissances de L3...

Définition

• Si X v.a. discrète à valeurs dans $I=\{x_j\}_{j\in J}$), l'espérance de X est

$$\mathbb{E}[X] = \sum_{j \in J} x_j \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |x_j| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X , l'espérance de X est

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |t| \, f_X(t) \, dt < \infty.$$

Si X une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans I et $h: I \to \mathbb{R}$ continue par morceaux,

$$\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega) \qquad \text{si cela existe!}.$$

Remarque: Cette formule nécessite des connaissances de L3...

Définition

• Si X v.a. discrète à valeurs dans $I=\{x_j\}_{j\in J}$), l'espérance de X est

$$\mathbb{E}[X] = \sum_{i \in I} x_j \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |x_j| \mathbb{P}_X(x_j) < \infty$.

ullet Si X est une v.a. continue de densité f_X , l'espérance de X est

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |t| \, f_X(t) \, dt < \infty.$$

- Loi de Bernoulli $\mathcal{B}(p)$ $X: \Omega \to \{0,1\}, \; \left\{ \begin{array}{l} \mathbb{P}(X=1) = p \in [0,1] \\ \mathbb{P}(X=0) = 1 p \end{array} \right.$ $\Longrightarrow \quad \mathbb{E}[X] = 0 * (1-p) + 1 * p = p.$
- ② Loi Géométrique $\mathcal{G}(p) \ X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1-p)^{k-1} \ k \in \mathbb{N}^*$ $\implies \mathbb{E}[X] = \sum_{k=1}^{\infty} k \ p(1-p)^{k-1}.$ $\left[\ Si \ S(x) = \sum_{k=0}^{\infty} x^k = (1-x)^{-1} \ et \ |x| < 1, \ S'(x) = \sum_{k=1}^{\infty} k x^{k-1} = (1-x)^{-2} \ \right]$ $\implies \mathbb{E}[X] = pS'(1-p) = p^{-1} \ \text{si} \ p \neq 0.$

- Loi de Bernoulli $\mathcal{B}(p)$ $X: \Omega \to \{0,1\}, \; \left\{ \begin{array}{l} \mathbb{P}(X=1) = p \in [0,1] \\ \mathbb{P}(X=0) = 1 p \end{array} \right.$ $\Longrightarrow \quad \mathbb{E}[X] = 0 * (1-p) + 1 * p = p.$
- ② Loi Géométrique $\mathcal{G}(p) \ X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1-p)^{k-1} \ k \in \mathbb{N}^*$ $\implies \mathbb{E}[X] = \sum_{k=1}^{\infty} k \ p(1-p)^{k-1}.$ $\left[\ Si \ S(x) = \sum_{k=0}^{\infty} x^k = (1-x)^{-1} \ \text{et} \ |x| < 1, \ S'(x) = \sum_{k=1}^{\infty} k x^{k-1} = (1-x)^{-2} \ \right]$ $\implies \mathbb{E}[X] = pS'(1-p) = p^{-1} \ \text{si} \ p \neq 0.$

- Loi de Bernoulli $\mathcal{B}(p)$ $X: \Omega \to \{0,1\}, \; \left\{ \begin{array}{l} \mathbb{P}(X=1) = p \in [0,1] \\ \mathbb{P}(X=0) = 1 p \end{array} \right.$ $\Longrightarrow \quad \mathbb{E}[X] = 0 * (1-p) + 1 * p = p.$
- ② Loi Géométrique $\mathcal{G}(p) \ X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1-p)^{k-1} \ k \in \mathbb{N}^*$ $\implies \mathbb{E}[X] = \sum_{k=1}^{\infty} k \ p(1-p)^{k-1}.$ $\left[\ Si \ S(x) = \sum_{k=0}^{\infty} x^k = (1-x)^{-1} \ \text{et} \ |x| < 1, \ S'(x) = \sum_{k=1}^{\infty} k x^{k-1} = (1-x)^{-2} \ \right]$ $\implies \mathbb{E}[X] = pS'(1-p) = p^{-1} \ \text{si} \ p \neq 0.$
- $\text{Si } X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = \frac{1}{k} \frac{1}{k+1} = \frac{1}{k(k+1)}, \ k \in \mathbb{N}^*$ $\left[\sum_{k=1}^n \mathbb{P}(X = k) = (1 \frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + (\frac{1}{3} \frac{1}{4}) + \dots = 1 \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1 \right]$ $\Longrightarrow \mathbb{E}[X] = \sum_{k=1}^\infty \frac{1}{k+1} = +\infty.$ $\left[\frac{1}{k+1} \ge \ln(1 + \frac{1}{k+1}) = \ln(k+2) \ln(k+1) \text{ car } u \ge \ln(1+u)$ $d'où \ \mathbb{E}[X] \ge (\ln(2) \ln(1)) + (\ln(3) \ln(2)) + (\ln(4) \ln(2)) + \dots = +\infty \right]$

- Loi de Bernoulli $\mathcal{B}(p)$ $X: \Omega \to \{0,1\}, \; \left\{ \begin{array}{l} \mathbb{P}(X=1) = p \in [0,1] \\ \mathbb{P}(X=0) = 1 p \end{array} \right.$ $\Longrightarrow \quad \mathbb{E}[X] = 0 * (1-p) + 1 * p = p.$
- ② Loi Géométrique $\mathcal{G}(p) \ X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1-p)^{k-1} \ k \in \mathbb{N}^*$ $\implies \mathbb{E}[X] = \sum_{k=1}^{\infty} k \ p(1-p)^{k-1}.$ $\left[\ Si \ S(x) = \sum_{k=0}^{\infty} x^k = (1-x)^{-1} \ \text{et} \ |x| < 1, \ S'(x) = \sum_{k=1}^{\infty} k x^{k-1} = (1-x)^{-2} \ \right]$ $\implies \mathbb{E}[X] = pS'(1-p) = p^{-1} \ \text{si} \ p \neq 0.$

- Loi de Bernoulli $\mathcal{B}(p)$ $X: \Omega \to \{0,1\}, \; \left\{ \begin{array}{l} \mathbb{P}(X=1) = p \in [0,1] \\ \mathbb{P}(X=0) = 1 p \end{array} \right.$ $\Longrightarrow \quad \mathbb{E}[X] = 0 * (1-p) + 1 * p = p.$
- ② Loi Géométrique $\mathcal{G}(p) \ X : \Omega \to \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1-p)^{k-1} \ k \in \mathbb{N}^*$ $\implies \mathbb{E}[X] = \sum_{k=1}^{\infty} k \ p(1-p)^{k-1}.$ $\left[\ Si \ S(x) = \sum_{k=0}^{\infty} x^k = (1-x)^{-1} \ \text{et} \ |x| < 1, \ S'(x) = \sum_{k=1}^{\infty} k x^{k-1} = (1-x)^{-2} \ \right]$ $\implies \mathbb{E}[X] = pS'(1-p) = p^{-1} \ \text{si} \ p \neq 0.$
- $\begin{array}{l} \text{ Si } X: \Omega \to \mathbb{N}^*, \ \mathbb{P}\big(X=k\big) = \frac{1}{k} \frac{1}{k+1} = \frac{1}{k(k+1)}, \ k \in \mathbb{N}^* \\ \Big[\sum_{k=1}^n \mathbb{P}(X=k) = (1 \frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + (\frac{1}{3} \frac{1}{4}) + \ldots = 1 \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 1 \Big] \\ \Longrightarrow \quad \mathbb{E}[X] = \sum_{k=1}^{\infty} \frac{1}{k+1} = +\infty. \\ \Big[\frac{1}{k+1} \ge \ln\left(1 + \frac{1}{k+1}\right) = \ln(k+2) \ln(k+1) \ \text{car } u \ge \ln(1+u) \\ \text{d'où } \mathbb{E}[X] \ge \left(\ln(2) \ln(1)\right) + \left(\ln(3) \ln(2)\right) + \left(\ln(4) \ln(2)\right) + \ldots = +\infty \Big] \end{aligned}$

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_Y(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

② Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0,\infty[$, $\begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (\text{IPP})$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} \, e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

3 Loi de Cauchy C(1) $X: \Omega \to \mathbb{R}$, $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ pour $x \in \mathbb{R}$ $\Longrightarrow \mathbb{E}[X] = \frac{1}{\pi} \int_{-\pi}^{\infty} \frac{t}{1+t^2} dt$ n'existe pas.

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_Y(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

2 Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0, \infty[$, $\begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (IPP)$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

3 Loi de Cauchy C(1) $X: \Omega \to \mathbb{R}$, $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ pour $x \in \mathbb{R}$ $\Longrightarrow \mathbb{E}[X] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t}{1+t^2} dt$ n'existe pas.

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_Y(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

2 Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0, \infty[, \begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (IPP)$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

3 Loi de Cauchy C(1) $X: \Omega \to \mathbb{R}$, $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ pour $x \in \mathbb{R}$ $\Longrightarrow \mathbb{E}[X] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t}{1+t^2} dt$ n'existe pas.

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

2 Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0, \infty[, \begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (IPP)$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

3 Loi de Cauchy C(1) $X: \Omega \to \mathbb{R}$, $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ pour $x \in \mathbb{R}$ $\Longrightarrow \mathbb{E}[X] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t}{1+t^2} dt$ n'existe pas.

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_Y(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

2 Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0, \infty[, \begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (IPP)$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

3 Loi de Cauchy $\mathcal{C}(1)$ $X: \Omega \to \mathbb{R}$, $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ pour $x \in \mathbb{R}$ $\Longrightarrow \mathbb{E}[X] = \frac{1}{\pi} \int_{-\pi}^{\infty} \frac{t}{1+t^2} dt$ n'existe pas.

1 Loi Uniforme $\mathcal{U}([0,1]) \ X : \Omega \to [0,1], \ \begin{cases} f_X(x) = 1 & x \in [0,1] \\ f_Y(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \int_0^1 t \, dt = \left[\frac{1}{2} \, t^2\right]_0^1 = \frac{1}{2}.$$

2 Loi Exponentielle $\mathcal{E}(\lambda)$ $X: \Omega \to [0, \infty[, \begin{cases} f_X(x) = \lambda e^{-\lambda x} & x \ge 0 \\ f_X(x) = 0 & \text{sinon} \end{cases}$

$$\implies \mathbb{E}[X] = \int_{-\infty}^{\infty} t \, f_X(t) \, dt = \lambda \int_{0}^{\infty} t \, e^{-\lambda t} \, dt.$$

$$= \left[-t \, e^{-\lambda t} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \, dt \, (IPP)$$

$$= 0 - 0 + \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{\infty} = \frac{1}{\lambda}.$$

• Loi de Cauchy $\mathcal{C}(1)$ $X:\Omega\to\mathbb{R},\ f_X(x)=\frac{1}{\pi}\,\frac{1}{1+x^2}$ pour $x\in\mathbb{R}$ \Longrightarrow $\mathbb{E}[X]=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{t}{1+t^2}\,dt$ n'existe pas.

Soit $h: I \to \mathbb{R}$ une fonction continue par morceaux.

• Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$, l'espérance de h(X) est

$$\mathbb{E}[h(X)] = \sum_{i \in I} h(x_i) \mathbb{P}(X = x_i)$$
 si $\sum_{j \in J} |h(x_j)| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X , l'espérance de h(X) est

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |h(t)| \, f_X(t) \, dt < \infty.$$

Remarque: Si on pose Y=h(X) avec h continue par morceaux, Y est aussi une v.a. sur $(\Omega,\mathcal{A},\mathbb{P})$ car $h^{-1}(]-\infty,x])=\bigcup_{k=1}^M I_k$ avec I_k intervalle,

$$\{h(X) \leq x\} = \bigcup_{k=0}^{M} \{X \in I_k\} \in \mathcal{A} \text{ et } \mathbb{E}[h(X)] = \mathbb{E}[Y] \text{ existe si } \mathbb{E}[|Y|] < \infty.$$

Soit $h: I \to \mathbb{R}$ une fonction continue par morceaux.

• Si X v.a. discrète à valeurs dans $I = \{x_j\}_{i \in J}$, l'espérance de h(X) est $\mathbb{E}[h(X)] = \sum_{i \in J} h(x_i) \mathbb{P}(X = x_j)$ si $\sum_{j \in J} |h(x_j)| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X , l'espérance de h(X) est

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |h(t)| \, f_X(t) \, dt < \infty.$$

Remarque : Si on pose Y=h(X) avec h continue par morceaux, Y est aussi une v.a. sur $(\Omega,\mathcal{A},\mathbb{P})$ car $h^{-1}(]-\infty,x])=\bigcup_{k=1}^M I_k$ avec I_k intervalle,

$$\{h(X) \le x\} = \bigcup_{k=1}^{M} \{X \in I_k\} \in \mathcal{A} \text{ et } \mathbb{E}[h(X)] = \mathbb{E}[Y] \text{ existe si } \mathbb{E}[|Y|] < \infty.$$

Soit $h: I \to \mathbb{R}$ une fonction continue par morceaux.

• Si X v.a. discrète à valeurs dans $I = \{x_j\}_{j \in J}$, l'espérance de h(X) est

$$\mathbb{E}[h(X)] = \sum_{j \in J} h(x_j) \mathbb{P}(X = x_j)$$
 si $\sum_{j \in J} |h(x_j)| \mathbb{P}_X(x_j) < \infty$.

• Si X est une v.a. continue de densité f_X , l'espérance de h(X) est

$$\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} t \, f_X(t) \, dt \quad \text{si } \int_{-\infty}^{+\infty} |h(t)| \, f_X(t) \, dt < \infty.$$

Remarque : Si on pose Y = h(X) avec h continue par morceaux, Y est aussi une v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ car $h^{-1}(]-\infty, x]) = \bigcup_{k=1}^M I_k$ avec I_k intervalle,

$$\{h(X) \le x\} = \bigcup_{k=0}^{M} \{X \in I_k\} \in \mathcal{A} \text{ et } \mathbb{E}[h(X)] = \mathbb{E}[Y] \text{ existe si } \mathbb{E}[|Y|] < \infty.$$

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si h: $\mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + c Y] = \mathbb{E}[X] + c \mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

Démonstration

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a \times 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}\big[|X+c$ $Y|\big] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c$ Y] existe. Soit $\mathbb{E}\big[X+c$ $Y\big] = \int_{\Omega} (X(\omega)+c$ $Y(\omega))$ $d\mathbb{P}(\omega) = \int_{\Omega} X(\omega)$ $d\mathbb{P}(\omega)+c$ $\int_{\Omega} Y(\omega)$ $d\mathbb{P}(\omega)=\mathbb{E}[X]+c$ $\mathbb{E}[Y]$.

Conséquence : Si $\mathbb{E}[X^2] < \infty$ alors $\mathbb{E}[|X|] < \infty$ car, $|X| \leq \frac{1}{2} (1 \pm X^2)$. 290

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si h: $\mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \ge Y$ alors $\mathbb{E}[X] \ge \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + c Y] = \mathbb{E}[X] + c \mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

Démonstration.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a\times 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}[|X+c|Y|] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c|Y]$ existe. Soit $\mathbb{E}[X+c|Y] = \int_{\Omega} (X(\omega)+c|Y(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega) + c \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega) = \mathbb{E}[X]+c \, \mathbb{E}[Y].$

Conséquence : Si $\mathbb{E}[X^2] < \infty$ alors $\mathbb{E}[|X|] < \infty$ car, $|X| \leq \frac{1}{2} (1 + X^2)$. See

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + cY] = \mathbb{E}[X] + c\mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a\times 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}[|X+c|Y|] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c|Y]$ existe. Soit $\mathbb{E}[X+c|Y] = \int_{\Omega} (X(\omega)+c|Y(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega) + c \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega) = \mathbb{E}[X]+c \, \mathbb{E}[Y].$

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- $\bullet \ \ \textit{Si} \ \ c \in \mathbb{R}, \ \mathbb{E}\big[X+c \ Y\big] = \mathbb{E}[X] + c \ \mathbb{E}[Y] \ \ \textit{si} \ \mathbb{E}[|X|] < \infty \ \ \text{et} \ \mathbb{E}[|Y|] < \infty.$

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a\times 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X| + |c| \, |Y|$. Donc $\mathbb{E}[|X+c \, Y|] \leq \mathbb{E}[|X|] + |c| \, \mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c \, Y]$ existe. Soit $\mathbb{E}[X+c \, Y] = \int_{\Omega} (X(\omega) + c \, Y(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega) + c \, \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega) = \mathbb{E}[X] + c \, \mathbb{E}[Y]$.

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- $Si \ X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- $\bullet \ \ \mathit{Si} \ c \in \mathbb{R}, \ \mathbb{E}\big[X+c \ Y\big] = \mathbb{E}[X] + c \ \mathbb{E}[Y] \ \mathit{si} \ \mathbb{E}[|X|] < \infty \ \mathit{et} \ \mathbb{E}[|Y|] < \infty.$

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a imes 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y) \leq z\} \in \mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X + c Y v.a. sur (Ω, A, \mathbb{P}) . On a $|X + c Y| \le |X| + |c| |Y|$. Donc $\mathbb{E}[|X + c Y|] \le \mathbb{E}[|X|] + |c| \mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X + c Y]$ existe. Soit $\mathbb{E}[X + c Y] = \int_{\Omega} (X(\omega) + c Y(\omega)) d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) + c \int_{\Omega} Y(\omega) d\mathbb{P}(\omega) = \mathbb{E}[X] + c \mathbb{E}[Y]$.

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + cY] = \mathbb{E}[X] + c\mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a imes 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X + c Y v.a. sur (Ω, A, \mathbb{P}) . On a $|X + c Y| \le |X| + |c| |Y|$. Donc $\mathbb{E}[|X + c Y|] \le \mathbb{E}[|X|] + |c| \mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X + c Y]$ existe. Soit $\mathbb{E}[X + c Y] = \int_{\Omega} (X(\omega) + c Y(\omega)) d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) + c \int_{\Omega} Y(\omega) d\mathbb{P}(\omega) = \mathbb{E}[X] + c \mathbb{E}[Y]$.

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- $Si \ X \ge Y$ alors $\mathbb{E}[X] \ge \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + c Y] = \mathbb{E}[X] + c \mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a imes 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}[|X+c|Y|] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c|Y]$ existe. Soit $\mathbb{E}[X+c|Y] = \int_{\Omega} (X(\omega)+c|Y(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)+c \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega) = \mathbb{E}[X]+c \, \mathbb{E}[Y]$.

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- $Si \ X \ge Y \ alors \ \mathbb{E}[X] \ge \mathbb{E}[Y] \ quand \ \mathbb{E}[|X|] < \infty \ et \ \mathbb{E}[|Y|] < \infty;$
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + cY] = \mathbb{E}[X] + c\mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a imes 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{\mathit{h}(X,Y) \leq z\} \in \mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \ge \int f$ quand $g \ge f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}[|X+c|Y|] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c|Y]$ existe. Soit $\mathbb{E}[X+c|Y] = \int_{\Omega} (X(\omega)+c|Y(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)+c \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega) = \mathbb{E}[X]+c \, \mathbb{E}[Y].$

Si X et Y sont deux v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$:

- Si X = a, $a \in \mathbb{R}$ une constante, $\mathbb{E}[X] = a$.
- Si $h: \mathbb{R}^2 \to \mathbb{R}$ continue par morceaux, Z = h(X,Y) v.a. sur (Ω,\mathcal{A}) ;
- Si $X \geq Y$ alors $\mathbb{E}[X] \geq \mathbb{E}[Y]$ quand $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$;
- Si $c \in \mathbb{R}$, $\mathbb{E}[X + c Y] = \mathbb{E}[X] + c \mathbb{E}[Y]$ si $\mathbb{E}[|X|] < \infty$ et $\mathbb{E}[|Y|] < \infty$.

Démonstration.

- Variable discrète telle que $\mathbb{P}(X=a)=1$ d'où $\mathbb{E}[X]=a imes 1=a$.
- Z est une application de Ω dans \mathbb{R} . On admet que $\{h(X,Y)\leq z\}\in\mathcal{A}$.
- Comme $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ et $\mathbb{E}[Y] = \int_{\Omega} Y(\omega) d\mathbb{P}(\omega)$ on utilise le fait que $\int g \geq \int f$ quand $g \geq f$.
- On a X+c Y v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$. On a |X+c $Y| \leq |X|+|c|$ |Y|. Donc $\mathbb{E}\left[|X+c$ $Y|\right] \leq \mathbb{E}[|X|]+|c|$ $\mathbb{E}[|Y|] < \infty$ et $\mathbb{E}[X+c$ Y] existe. Soit $\mathbb{E}[X+c$ $Y] = \int_{\Omega} (X(\omega)+c$ $Y(\omega))$ $d\mathbb{P}(\omega) = \int_{\Omega} X(\omega)$ $d\mathbb{P}(\omega)+c$ $\int_{\Omega} Y(\omega)$ $d\mathbb{P}(\omega) = \mathbb{E}[X]+c$ $\mathbb{E}[Y]$.

Conséquence : Si $\mathbb{E}[X^2] < \infty$ alors $\mathbb{E}[|X|] < \infty$ car $|X| \le \frac{1}{2}(1 + X^2)$.

Proposition

Si X v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ et $\mathbb{E}[X^2] < \infty$, on appelle variance de X le réel tel que

$$\mathit{var}(X) = \mathbb{E}\big[(X - \mathbb{E}[X])^2\big] = \mathbb{E}[X^2] - \big(\mathbb{E}[X]\big)^2 \in [0, \infty[.$$

Démonstration

blapres ce qui precede, si $\mathbb{E}[X^*] < \infty$ alors $\mathbb{E}[|X|] < \infty$ donc $\mathbb{E}[X]$ existe. Soit $h(x) = x^2 - (\mathbb{E}[X])^2$ d'où $\mathbb{E}[|h(X)|] < \infty$. De plus $\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2X E[X] + (\mathbb{E}[X])^2] = \mathbb{E}[X^2] - 2\mathbb{E}[X] E[X] + (\mathbb{E}[X])^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$. \square

Définition

Si $\mathbb{E}[X^2] < \infty$, on définit l'écart-type de X, $\sigma_X = \sqrt{var(X)} \in [0, \infty[$.

Exemple: Si X = a, $a \in \mathbb{R}$ une constante, $var(X) = \sigma_X = 0$.

Propriété

 $Si \mathbb{E}[X^2] < \infty$, $(a, c) \in \mathbb{R}^2$, $var(a + c X) = c^2 var(X) \in [0, \infty[$.

Proposition

Si X v.a. sur $(\Omega, \mathcal{A}, \mathbb{P})$ et $\mathbb{E}[X^2] < \infty$, on appelle variance de X le réel tel que

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \in [0, \infty[.]]$$

Démonstration.

D'après ce qui précède, si $\mathbb{E}[X^2] < \infty$ alors $\mathbb{E}[|X|] < \infty$ donc $\mathbb{E}[X]$ existe. Soit $h(X) = X^2 - (\mathbb{E}[X])^2$ d'où $\mathbb{E}[|h(X)|] < \infty$. De plus $\mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2X E[X] + (\mathbb{E}[X])^2] = \mathbb{E}[X^2] - 2\mathbb{E}[X] E[X] + (\mathbb{E}[X])^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$. \square

Définition

Si $\mathbb{E}[X^2] < \infty$, on définit l'écart-type de X, $\sigma_X = \sqrt{\mathit{var}(X)} \in [0, \infty[$.

Exemple: Si X = a, $a \in \mathbb{R}$ une constante, $var(X) = \sigma_X = 0$.

Propriété

Si $\mathbb{E}[X^2] < \infty$, $(a, c) \in \mathbb{R}^2$, $var(a + c X) = c^2 var(X) \in [0, \infty[$.