Première Année Master M.A.E.F. 2017 – 2018 Statistiques I

Examen final, janvier 2018

Examen de 3h. Tout document ou calculatrice est interdit.

1. (Sur 12 points) Soit la variable X qui suit une loi normale $\mathcal{N}(m, \sigma^2)$, où $m \in \mathbf{R}$ et $\sigma^2 \in]0, \infty[$ sont deux paramètres inconnus. Soit également une suite $(\varepsilon_k)_k$ de variables i.i.d. de loi $\mathcal{N}(0, \sigma^2)$, indépendantes de X. Au final, on note $\theta = {}^t(m, \sigma^2)$ et on observe (X_1, \dots, X_n) défini par

$$X_k = X + \varepsilon_k$$
 pour tout $k \in \mathbf{N}$.

- (a) Déterminer le modèle statistique paramétrique dominé induit par (X_1, \dots, X_n) après avoir montré que la loi de probabilité de (X_1, \dots, X_n) est gaussienne (1.5pts).
- (b) Déterminer la loi de X_i pour tout i (0.5pts).
- (c) Démontrer que Σ_n matrice de variance-covariance de (X_1, \dots, X_n) est une matrice avec $2\sigma^2$ sur la diagonale et σ^2 partout ailleurs (0.5pts). Montrer que $\det(\Sigma_n) = (n+1)\sigma^{2n}$ (1.5pts).
- (d) Démontrer que Σ_n^{-1} est la matrice avec $\frac{1}{\sigma^2} \frac{n}{n+1}$ sur la diagonale et $-\frac{1}{\sigma^2} \frac{1}{n+1}$ partout ailleurs (1pt).
- (e) En déduire la vraisemblance de (X_1, \dots, X_n) (1pt). Montrer que le modèle appartient à la famille exponentielle (2.5pts) et démontrer que $(\sum_{i=1}^n X_i, n\sum_{i=1}^n X_i^2 2\sum_{1\leq i< j\leq n} X_iX_j)$ est une statistique exhaustive complète pour ce modèle (0.5pts).
- (f) Démontrer que $\widehat{m}_n = \frac{1}{n} \sum_{i=1}^n X_i$ est l'estimateur de m sans biais uniformément de variance minimale parmi les estimateurs sans biais de m (1pt). Déterminer la loi de \widehat{m}_n (1pt). Est-ce un estimateur convergent (1pt)?
- *Proof.* (a) Le vecteur (X_1, \dots, X_n) est la somme de deux vecteurs gaussiens indépendants: (X, \dots, X) et $(\varepsilon_1, \dots, \varepsilon_n)$. C'est donc un vecteur gaussien. Le modèle statistique est donc $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), \mathbb{P}^{(n)}_{\theta})$, dominé par la mesure de Lebesgue sur \mathbf{R}^n .
- (b) Il est clair que $X_i \stackrel{\mathcal{L}}{\simeq} \mathcal{N}(m, 2\sigma^2)$
- (c) On a $\Sigma_n = (\text{cov}(X_i, X_j))_{1 \leq i,j \leq n}$. D'après la question précédente, pour i = j, $\text{cov}(X_i, X_j) = 2\sigma^2$. Pour $i \neq j$, $\text{cov}(X_i, X_j) = \text{cov}(X, X) = \sigma^2$ car les ε_k sont indépendants et indépendants de X. Si on note $D_n = \det(\Sigma_n)$, on peut écrire la dernière ligne comme la somme $L_1 + \dots + L_n$. On obtient ainsi $(n+1)\sigma^2$ partout sur la dernière ligne. En conséquence:

$$D_n = (n+1)\sigma^{2n} \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} = (n+1)\sigma^{2n} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} = (n+1)\sigma^{2n}.$$

- (d) Il suffit de faire le produit matriciel pour le vérifier.
- (e) On a ainsi $L_{\theta}(X_1, \dots, X_n) = (2\pi)^{-n/2} \left((n+1)\sigma^{2n} \right)^{-1/2} \exp\left(-\frac{1}{2}{}^t (X-mJ)\sigma_n^{-1} (X-mJ) \right)$, avec $J = {}^t (1, \dots, 1)$. On peut simplifier et ainsi $L_{\theta}(X_1, \dots, X_n) = \sqrt{\frac{(2\pi)^{-n}}{(n+1)\sigma^{2n}}} \exp\left(-\frac{1}{2(n+1)\sigma^2} \left(n \sum_{i=1}^n (X_i m)^2 2 \sum_{1 \leq i < j \leq n} (X_i m)(X_j m)J \right) \right)$. On peut décomposer les sommes pour pouvoir ainsi écrire:

$$L_{\theta}(X_1, \dots, X_n) = \sqrt{\frac{(2\pi)^{-n}}{(n+1)\sigma^{2n}}} \exp\left\{-\frac{1}{2(n+1)\sigma^2} \left(\left(n \sum_{i=1}^n X_i^2 - 2 \sum_{1 \le i < j \le n} X_i X_j\right) - 2(n-1)m \sum_{i=1}^n X_i + nm^2\right)\right\}.$$

On en déduit que le modèle appartient bien à la famille exponentielle avec $\alpha_1(\theta) = \frac{(n-1)m}{(n+1)\sigma^2}$, $\alpha_2(\theta) = -\frac{1}{2(n+1)\sigma^2}$ et $a_1(X_1,\ldots,X_j) = \sum_{i=1}^n X_i$, $a_2(X_1,\ldots,X_j) = n \sum_{i=1}^n X_i^2 - 2 \sum_{1 \le i < j \le n} X_i X_j$ et $\beta(\theta) = -n \log(\sigma^2) - \frac{nm^2}{2(n+1)\sigma^2}$. On trouve ainsi que $\alpha(\Theta) = \alpha(\mathbf{R} \times]0, \infty[) = \mathbf{R} \times]-\infty$, 0[donc d'intérieur non vide: la statistique est bien exhaustive complète.

- (f) On sait d'après le Lemme de Sheffé que l'estimateur sans biais de variance minimale uniformément parmi tous les estimateurs sans biais sera une fonction d'une statistique exhaustive complète. Or $\mathbb{E}(\overline{X}_n) = m$, donc \overline{X}_n est bien un estimateur sans biais de variance minimale uniformément parmi tous les estimateurs sans biais de m. Comme (X_1, \ldots, X_n) est un vecteur gaussien, on en déduit que \overline{X}_n est une variable gaussienne. Sa variance est $\operatorname{var}(\overline{X}_n) = \frac{1}{n^2} \left(\sum_{i=1}^n \operatorname{var}(X_i) + 2 \sum_{1 \le i < j \le n} \operatorname{cov}(X_i, X_j) \right) = \frac{1}{n^2} \left(2n \, \sigma^2 + (n^2 n) \sigma^2 \right) = \left(1 + \frac{1}{n} \right) \sigma^2$. Donc $\overline{X}_n \stackrel{\mathcal{L}}{\simeq} \mathcal{N}(m, \left(1 + \frac{1}{n} \right) \sigma^2)$. Comme $\lim_{n \to \infty} \operatorname{var}(\overline{X}_n) = \sigma^2$, on en déduit que $\overline{X}_n \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(m, \sigma^2)$: ce n'est pas un estimateur convergent de m.
- 2. (Sur 18 points) Soit une suite $(\varepsilon_{ij})_{i,j\in\mathbb{N}}$ de v.a.i.i.d. de loi Bernoulli de paramètre $p\in]0,1[$. Pour $m\in\mathbb{N},$ on définit

$$X_j = \sum_{i=1}^m \varepsilon_{ij} \quad \text{pour } j \in \mathbf{N}^*$$

(par convention $\sum_{i=1}^{0} \varepsilon_{ij} = 0$). On observe (X_1, \ldots, X_n) où $n \in \mathbf{N}^*$.

- (a) Pour $m \in \mathbb{N}$ fixé, démontrer que $(X_j)_{j \in \mathbb{N}}$ forme une suite de v.a.i.i.d. de loi à préciser (1pt).
- (b) Tout d'abord, on suppose que m est connu et p inconnu. Déterminer le modèle statistique induit par (X_1, \ldots, X_n) (0.5pts), montrer qu'il est dominé (0.5pts) et appartient à la famille exponentielle (0.5pts). Déterminer un estimateur de p sans biais et efficace (1pt) en précisant la borne de Cramèr-Rao (0.5pts).
- (c) On suppose maintenant que m est également inconnu et on note $\theta = {}^t(p,m)$. Déterminer le modèle statistique induit par (X_1,\ldots,X_n) (0.5pts), montrer qu'il est dominé (0.5pts) et qu'il n'appartient pas à la famille exponentielle (0.5pts). Soit l'estimateur $\widehat{\theta}_n = {}^t(\widehat{p}_n,\widehat{m}_n)$ avec $\widehat{m}_n = \max_{1 \le i \le n} X_i$ et $\widehat{p}_n = \frac{1}{\widehat{m}_n n} \sum_{i=1}^n X_i$. Montrer que $\mathbb{P}(\max_{1 \le i \le n} X_i = m) = 1 (1 p^m)^n$ (1.5pts). En déduire que \widehat{m}_n est un estimateur convergent de m (0.5pts). En déduire que \widehat{p}_n est également un estimateur convergent de p (utiliser par exemple la fonction de répartition de \widehat{p}_n ...) (2.5pts).
- (d) On suppose enfin que

$$X_j = \sum_{i=1}^{T_j} \varepsilon_{ij} \quad \text{pour } j \in \mathbf{N}^*$$

où les (T_j) sont des v.a.i.i.d. de loi de Poisson de paramètre $\lambda > 0$ inconnu, indépendantes des (ε_{ij}) . Le vecteur de paramètre inconnu est maintenant $\theta = {}^t(p,\lambda)$. Déterminer le modèle statistique induit par (X_1,\ldots,X_n) (0.5pts), montrer qu'il est dominé (0.5pts). Montrer que pour $m \geq k$ alors $\mathbb{P}(X_j = k \cap T_j = m) = e^{-\lambda} \frac{\lambda^m}{k!(m-k)!} p^k (1-p)^{m-k}$ (1.5pts). En déduire que $(X_j)_j$ est une suite de v.a.i.i.d. de loi de Poisson de paramètre λp (on pourra faire le changement d'indice m' = m - k...) (1.5pts). En déduire que le modèle est exponentiel (1pt). Montrer que $\sum_{i=1}^n X_i$ est une statistique exhaustive et complète pour le modèle (1pt). Démontrer cependant qu'il n'y a pas unicité de l'estimateur du maximum de vraisemblance de $\theta = {}^t(p,\lambda)$ et non convergence de n'importe lequel d'entre eux (2pts).

- *Proof.* (a) On sait que la somme de m v.a.i.i.d. Bernoulli de paramètre p est bien une binomiale $\mathcal{B}(m,p)$, loi de chaque X_j . De plus les $(\varepsilon_{ij})_{i,j\in\mathbb{N}}$ étant indépendantes, on en déduit que les X_j le sont également.
- (b) Le modèle est alors $\left(\{0,\ldots,m\}^n,\mathcal{P}(\{0,\ldots,m\}^n),\mathcal{B}(m,p)^{\otimes n}\right)_p$, dominé par la mesure de comptage sur $\{0,\ldots,m\}^n$. Du fait de l'indépendance, sa vraisemblance est $L_p(x_1,\ldots,x_n)=\prod_{j=1}^n \binom{m}{x_j} p^{x_j} (1-p)^{m-x_j}=\left(\prod_{j=1}^n \binom{m}{x_j}\right) p^{\sum_{j=1}^n x_j} (1-p)^{m-x_j}$. En passant à l'exponentielle, on a $L_p(x_1,\ldots,x_n)=\exp\left\{\sum_{j=1}^n \log\binom{m}{x_j}+nm\log(1-p)+\left(\log(p)-\log(1-p)\right)\right\}$ et $\beta(p)=nm\log(1-p)$. La fonction de p que l'on peut estimer efficacement à une transformation affine près est $g(p)=\beta'(p)/\alpha'_1(p)=-p/nm$. Ainsi

La fonction de p que l'on peut estimer efficacement à une transformation affine près est $g(p) = \beta'(p)/\alpha'_1(p) = -p/nm$. Ainsi p peut être estimé efficacement. Or $\mathbb{E}\left(\frac{1}{nm}\sum_{j=1}^n X_j\right) = p$, donc $\widehat{p}_n = \frac{1}{nm}\sum_{j=1}^n X_j$ est un estimateur efficace de p. Sa variance est $\frac{m}{n} p(1-p)$ qui est donc également la borne de Cramèr-Rao atteinte par \widehat{p}_n .

(c) Le modèle est alors $\left(\mathbf{N}^n, \mathcal{P}(\mathbf{N}^n), \mathcal{B}(m, p)^{\otimes n}\right)_{\theta}$. Il est dominé par la mesure de comptage sur $\mathcal{P}(\mathbf{N}^n)$. La vraisemblance du modèle est pour $(x_1, \dots, x_n) \in \mathbf{N}^n$, $L_{\theta}(x_1, \dots, x_n) = \left(\prod_{j=1}^n \binom{m}{x_j}\right) p^{\sum_{j=1}^n x_j} (1-p)^{nm-\sum_{j=1}^n x_j} \mathbb{I}_{\max_{1 \le j \le n}(x_j)}$

ce n'est pas un modèle appartenant à la famille exponentielle car cette vraisemblance peut s'annuler (le support de la loi dépend de θ).

On a $\mathbb{P}(\max_{1 \le i \le n} X_i = m) = 1 - \mathbb{P}(\max_{1 \le i \le n} X_i \le m - 1) = 1 - \prod_{j=1}^n \mathbb{P}(X_j \le m - 1) = 1 - \left(1 - \mathbb{P}(X_j = m)\right)^n$. Puisque $\mathbb{P}(X_j = m) = p^m$, on déduit $\mathbb{P}(\max_{1 \le i \le n} X_i = m) = 1 - (1 - p^m)^n$.

Comme $0 < p^m < 1$, on a $\mathbb{P}(\max_{1 \le i \le n} X_i = m) \xrightarrow[n \to +\infty]{} 1$, donc $\max_{1 \le i \le n} X_i \xrightarrow[n \to +\infty]{} m$: l'estimateur est bien convergent. Enfin, à partir de la loi de grands nombres, on sait que pour $\widehat{m}_n = m$, alors $\widehat{p}_n \xrightarrow[n \to +\infty]{\mathcal{P}} p$. Donc on peut écrire que $\mathbb{P}(\widehat{p}_n \le n)$ $x \mid \widehat{m}_n = m) \xrightarrow[n \to +\infty]{} F_{\delta_p}(x)$. Mais $\mathbb{P}(\widehat{p}_n \le x) = \mathbb{P}(\widehat{p}_n \le x \mid \widehat{m}_n = m) \mathbb{P}(\widehat{m}_n = m) + \mathbb{P}(\widehat{p}_n \le x \mid \widehat{m}_n \ne m) (1 - \mathbb{P}(\widehat{m}_n = m))$.

Comme $\mathbb{P}(\widehat{m}_n = m) \xrightarrow[n \to +\infty]{} 1$, on en déduit que $\mathbb{P}(\widehat{p}_n \leq x) \xrightarrow[n \to +\infty]{} F_{\delta_p}(x)$: donc $\widehat{p}_n \xrightarrow[n \to +\infty]{\mathcal{P}} p$.

(d) Le modèle est alors $(\mathbf{N}^n, \mathcal{P}(\mathbf{N}^n), \mathbb{P}_{\theta}^{\otimes n})_{\theta}$ car les variables X_j sont indépendantes. Il est dominé par la mesure de comptage sur $\mathcal{P}(\mathbf{N}^n)$.

On a $\mathbb{P}(X_j = k \cap T_j = m) = \mathbb{P}(X_j = k \mid T_j = m) \mathbb{P}(T_j = m) = \frac{m!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} \times e^{-\lambda} \frac{\lambda^m}{m!} p^k (1-p)^{m-k} = \frac{n!}{k!(m-k)!} p^k (1-p)^{m-k} = \frac{n!}{k!} p^k (1-p)^{m-k} = \frac{n$ $e^{-\lambda} \frac{\lambda^m}{k!(m-k)!} p^k (1-p)^{m-k}$.

On peut écrire par la formule des probabilités totales que $\mathbb{P}(X_j = k) = \sum_{m=k}^{\infty} \mathbb{P}(X_j = k \cap T_j = m) = e^{-\lambda} \sum_{m=k}^{\infty} \frac{\lambda^m}{k!(m-k)!} p^k (1-p)^{m-k}$. With m' = m - k and therefore m = m' + k, we finally obtain $\mathbb{P}(X_j = k) = e^{-\lambda} \sum_{m'=0}^{\infty} \frac{\lambda^{m'+k}}{k!m'!} p^k (1-p)^{m'} = e^{-\lambda} \frac{(\lambda p)^k}{k!} \sum_{m'=0}^{\infty} \frac{((1-p)\lambda)^{m'}}{m'!} = e^{-\lambda} \frac{(\lambda p)^k}{k!} e^{(1-p)\lambda} = e^{-p\lambda} \frac{(\lambda p)^k}{k!}$. C'est bien une loi de Poisson de paramètre λp .

Du fait de l'indépendance des variables, la vraisemblance est $L_{\theta}(X_1, \dots, X_n) = \prod_{j=1}^n e^{-p\lambda} \frac{(\lambda p)^{X_j}}{X_j!} = \frac{e^{-np\lambda}}{\prod_{j=1}^n X_j!} (\lambda p)^{\sum_{j=1}^n X_j}$.

On en déduit que $L_{\theta}(X_1, \dots, X_n) = \exp\left\{-np\lambda - \sum_{j=1}^n \log(X_j!) + \log(\lambda p) \sum_{j=1}^n X_j\right\}$. Le modèle appartient à la famille exponentielle, avec $\alpha_1(\theta) = \log(\lambda p)$, $a_1(X_1, \dots, X_n) = \sum_{j=1}^n X_j$ et $\beta(\theta) = -np\lambda$. Comme $\alpha_1(\Theta) = -\infty$, 0[est d'intérieur non vide, alors $\sum_{j=1}^n X_j$ est une statistique exhaustive complète du modèle.

Le modèle repose sur le produit des paramètres λp , donc il est sur-paramétré et on pourrait remplacer λp par $\lambda' \lambda p$. Il n'est donc pas possible d'estimer de manière différenciée λ ou p.