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Abstract

The computation of the local correlation dimension is a way for estimating the Hausdorff dimension of the

image of multidimensional stochastic processes. It can be obtained from the asymptotic behavior of the self-

intersection occupation measure around zero. In this paper, we replace the usual indicator function of the

occupation measure by a Gaussian kernel. Hence, we obtain the consistency of the local correlation dimension

for multivariate fractional Brownian motion. On the other hand, we show that any used norms on Rd give the

same asymptotic behavior of the occupation measure. The use of a numerical procedure based on log− log least

square estimator and Monte-Carlo experiments confirm the theoretical results and provide an efficient way of

estimation of the Hausdorff dimension. In addition, we show that our proposed estimation method performs

the univariate one on the estimation of the Hausdorff dimension.

Keywords: Occupation measure, Hausdorff dimension, local correlation dimension, Gaussian kernel

correlation integral, semi-parametric estimation

1. Introduction

For a stochastic process X of Rd, the Hausdorff dimension of its image {Xt, t ∈ [0, T ]} or its graph

{(t,Xt), t ∈ [0, T ]} is an important measure to its roughness. On this point, the Hausdorff dimension DH

for different stochastic processes has been studied in literature. Taylor in [17] use the method of potential

theory to determinate the Hausdorff dimension of the image of a d-dimensional Brownian motion and he proved5

that DH = min{d, 2}. The Lévy processes are studied by Pruit in [14], where he established the formula of

the dimension of the image of a general Lévy process in terms of its potential measurement. The fractional

Brownian motions are treated in [18] and their Gaussian or α-stable extensions are studied in [8].

To obtain or estimate the Hausdorff dimension of the image of an Rd stochastic process X, its occupation

measure plays an important role using that it is the natural measure carried by its image. We remind that the

occupation measure of the process X is defined, for all Borel set A ⊂ Rd and T > 0, by:

µT (A) =

∫ T

0

I(Xs∈A) ds,

where I is the indicator function. The existence of the density of such occupation measure with respect to the

Lebesgue measure (also called the local time) for a one-dimensional Brownian motion has been established by
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Lévy. For d ≥ 2, this local time no more exists, and the appropriate tool to describe the local regularity is the

asymptotic behavior of µT (A) when A is small. More precisely, and if it exists, define

DP (x) = lim
r→0

log(µT (B(x, r)))

log(r)
,

where B(x, r) is the ball of centre x and radius r. Hence, Perkins and Taylor in [12] proved that DP (x) = DH = 2

for a 2-dimensional Brownian motion at any point of its support.10

Bardet in [2] has considered another occupation measure, which he called bivariate occupation measure or

self-intersection occupation measure of the process X. This measure is defined, for J a compact set of R2 and

I ⊂ Rd, by:

µb(I, J) =

∫
J

I(Xt−Xs∈I) dsdt.

Bardet studied the asymptotic behavior of µb(Bd(0, r), [0, T ]2) when r → 0 for continuous stochastic processes

of Rd. Interested to gaussian processes with stationary increments that are fractional Brownian motion and

α-stable process with independent components. Using that

µb(Bd(0, r), [0, T ]2) =

∫ T

0

∫ T

0

I(‖Xt−Xs‖≤r) dtds, (1)

where ‖.‖ is a norm on Rd, Bardet studied the asymptotic behavior of µb(Bd(0, r), [0, T ]2) when r → 0. Hence,

if it exists, he defined the local correlation dimension ν by:

ν = lim
r→0

log(µb(Bd(0, r), [0, T ]2))

log(r)
. (2)

This dimension ν is proved to be less or equal to the Hausdorff dimension DH , and for multivariate fractional

Brownian motions or α-stable process, he proved that ν = DH .

In practice, Diks in [7] showed that there is a difference between a weight to be given to all distances

‖Xi −Xj‖. In this way, the smallest distances between pairs (Xi, Xj) have the smallest weights. This problem

is solved by using a Gaussian kernel function instead of the indicator function in the occupation measure. Hence

he considered the Gaussian kernel bivariate occupation measure

µG(Bd(0, r), [0, T ]2) =

∫ T

0

∫ T

0

exp
(−‖Xt −Xs‖2

4r2

)
dtds,

as well as the Gaussian kernel correlation integral defined for r > 0 by:

CGX,T (r) =
µG(Bd(0, r), [0, T ]2)

T 2
(3)

and if it exists we define the local Gaussian kernel correlation dimension by:

νG = lim
r→0

log(CGX,T (r))

log(r)
. (4)

In a practical framework, by considering N+1 vectors (X0, XT/N , . . . , XT ) from a trajectory X(ω) = {Xt(ω), t ∈

[0, T ]} of the process X, we consider CGX,N (r) the empirical version of CGX,T (r) defined by:

CGX,N (r) =
2

N(N − 1)

∑∑
0 ≤ i < j ≤ N

exp

(−‖XiT/N −XjT/N‖2

4r2

)
. (5)
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Clearly, if X is an almost sure continuous process, we could expect for any r > 0,

lim
N→∞

CGX,N (r) = CGX,T (r).

In this paper, we study the asymptotic behavior of Gaussian kernel correlation integral given by (3) when r

tends to zero for a Rd-multidimensional fractional Brownian motion with independent components and with

index (α1, α2, . . . , αd), by convention α1 ≤ α2 ≤ · · · ≤ αd (for an introduction to these processes, see chapter 8

of [1]). In this case, we partially show that the local Gaussian kernel correlation dimension of such process is

given by:

νG = DH = min
((1 +

∑i
k=1(αi − αk)

αi

)
1≤i≤d

, d
)
, (6)

and therefore a log− log regression of CGX,N (r) onto r could provide an estimation of the Hausdorff dimension

of the image of X. All theoretical results are detailed in section 2. The section 3 is devoted to Monte-Carlo’s15

experiments on the estimation of Hausdorff dimension for Rd-multidimensional fractional Brownian motion

based on the computation of local Gaussian kernel correlation dimension νG defined in (4).

2. Asymptotic behavior of the Gaussian kernel correlation integral

In all this article we use the notation:

a.s.∼
r→0

: almost sure asymptotic equivalence when r → 0 :

f(r)
a.s.∼
r→0

g(r) ⇐⇒ f(r)

g(r)

a.s.−→
r→0

1

a.s.∼
p→+∞

: almost sure asymptotic equivalence when p→∞ :

f(p)
a.s.∼

p→+∞
g(p) ⇐⇒ f(p)

g(p)

a.s.−→
p→+∞

1.

Denote also20

S(j) = α1 + α2 + · · ·+ αj , S(0) = 0, and

V (j) =
1 +

∑j
k=1(αj − αk)

αj
.

If S(d) ≥ 1, let integer i0 ∈ {2, · · · , d} be such that S(i0 − 1) < 1 and S(i0) ≥ 1.

Assume that X is a multidimensional fractional Brownian motion in Rd with index

(α1, α2, . . . , αd), i.e. X = {Xt = (X
(1)
t , X

(2)
t , . . . , X

(d)
t )′, t ∈ [0, T ]} satisfies the following assumptions:

• (H1) X is a d-dimensional Gaussian process, with zero-mean and stationary increments.

• (H2) For each i = 1, . . . , d, there exist αi ∈]0, 1[ and ai > 0 such that for all t ∈ [0, T ]:25

E[(X
(i)
t −X

(i)
0 )2] = σ2

i (t) = ai|t|2αi . (7)

• (H3) For all (s, t) ∈ [0, T ]2, for each (i, j) ∈ {1, . . . , d}2 such that i 6= j, X
(i)
t is independent of X

(j)
s .
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Then, the Gaussian kernel correlation integral of such a process verifies:

Proposition 2.1. Let X verify assumptions (H1), (H2) and (H3). For z = (z1, . . . , zd) ∈ Rd, denote

‖z‖2 =
z21
2a1

+ · · ·+ z2d
2ad

and assume 0 < α1 ≤ · · · ≤ αd < 1. Then,

1. if α1 + · · ·+ αd = 1,30

CGX,T (r) =
2d

T αd
rd log(1/r)

(
1 + ηr

)
with E[η2r ] −→

r→0

0. (8)

2. if α1 + · · ·+ αd > 1, then

CGX,T (r)
a.s.∼
r→0


2i0+1

T

(
αi0+1 − αi0
αi0+1αi0

)
ri0 log(1/r) if α1 + · · ·+ αi0 = 1 and αi0+1 6= αi0 ;

2νG

Tαi0

(
1

1−S(j0 − 1)
+

1

S(k0)−1

)
rνG else,

(9)

with

• i0 ∈ {2, . . . , d} be such that α1 + · · ·+ αi0−1 < 1 and α1 + · · ·+ αi0 ≥ 1,

• j0 = min {j ∈ {1, . . . , i0} , αj = αi0} and k0 = max {k ∈ {i0, · · · , d}, αk = αi0}.

Proof of Proposition 2.1. In Bardet [2], the asymptotic behavior of the bivariate occupation measure µb(Bd(0, r), [0, T ]2)

defined in (1) when r → 0 is obtained from the asymptotic behavior of its Laplace transform µ̂(p) when p→∞

from a Tauberian theorem. But using usual its Laplace transform µ̂(p) satisfies:

µ̂(p) =

∫ T

0

∫ T

0

exp
(
−p ‖Xt −Xs‖2

)
dtds.

Therefore, using its definition in (3), we have

CGX,T (r) =
1

T 2
µ̂
(
1/4r2

)
.

Hence, we can use the asymptotic behavior of µ̂(p) when p→∞ established in [2] to obtain the one of CGX,T (r)

when r → 0. As a consequence:

1. If α1 + · · ·+ αd = 1, then it was proved that E
[
µ̂(p)

]
∼ 1

T 2αd
p−d/2 log(p) when p→∞ and in Lemma 4.3

of [3], that

E
[∣∣∣ pd/2

log(p)
µ̂(p)− 1

T 2αd

∣∣∣2] ≤ log(log(p))

log(p)
,

inducing µ̂(p) =
1

T 2αd
p−d/2 log(p)

(
1 + ηp

)
with E

[
|ηp|2

]
−→
p→+∞

0. Therefore, by replacing p with 1/4r2, we

obtained the L2 consistency of CGX,T (r) when r → 0.

2. If α1 + · · ·+ αd > 1, it was proved that

µ̂(p)
a.s.∼

p→+∞
m0(α1, . . . , αd, T )p−νG/2(log(p))e0 , (10)

where e0 = 1 if S(i0) = 1 and αi0 6= αi0+1, else e0 = 0, and

m0(α1, . . . , αd, T ) =


T

(
αi0+1 − αi0
2αi0+1αi0

)
if S(i0) = 1 and αi0+1 6= αi0 ,

T

(
1

1−S(j0 − 1)
+

1

S(k0)−1

)
else,
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where j0 = min {j ∈ {1, . . . , i0} , αj = αi0} and k0 = max {k ∈ {i0, . . . , d}, αk = αi0}. Then, the asymptotic

behavior of CGX,T (r) when r → 0 is obtained by replacing p with 1/4r2.35

By this way, the Gaussian kernel correlation integral for planar and spatial Brownian motion admits this

behavior:

Corollary 2.1. If X is a Rd-Brownian motion such that for all (s, t) ∈ [0, T ]2 and each (i, j) ∈ {1, . . . , d},

E[(X
(i)
t )2] = |t| and X

(i)
t and X

(j)
s are independent when i 6= j. With ‖.‖e the usual Euclidean norm on Rd,

1. if d = 2 (X is a planar Brownian motion), CGX,T (r) =
8

T
r2 log

(
1/r
)(

1 + ηr
)

with E[η2r ] −→
r→0

0.40

2. if d ≥ 3 (X is a Rd-spatial Brownian motion), CGX,T (r)
a.s.∼
r→0

8d

T (d− 2)
r2.

Remark 2.1. Unfortunately, we did not succeed to obtain a consistency of CGX,T (r) in the case where

d∑
i=1

αi < 1.

However, in [2] it was proved that µb(Bd(0, r), [0, T ]2)
a.s.∼
r→0

Z rd when r → 0, with Z a random variable defined

from the self-intersection local time. We could as well conjecture that CGX,T (r)
a.s.∼
r→0

Z ′ rd when r → 0, with Z ′

a random variable.45

Corollary 2.2. If we consider the classical Euclidian norm ‖ · ‖e instead of ‖ · ‖ (or other norm on Rd), using

the usual property of equivalence of norms in Rd, we have:

c ‖XiT/N −XjT/N‖2 ≤ ‖XiT/N −XjT/N‖2e ≤ C ‖XiT/N −XjT/N‖2,

with 0 < c ≤ C < ∞. Then, if we denote CG,eX,T (r) the random variable defined in (5) but computed with ‖ · ‖e
instead of ‖ · ‖, then

CGX,T (r/
√
C) ≤ CG,eX,T (r) ≤ CGX,T (r/

√
c),

for any r > 0. Therefore, the asymptotic behavior of log(CG,eX,T (r))/ log(r) and log(CGX,T (r))/ log(r) are the

same (and are the same for any norm on Rd).

3. Numerical illustrations

3.1. A conjecture and numerical procedures

From the previous results, we could conjecture that:

νG = DH = min
((1 +

∑i
k=1(αi − αk)

αi

)
1≤i≤d

, d
)
, (11)

in the case of multivariate fractional Brownian motions. Monte-Carlo experiments will exhibit the validity of a

such result.
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For this, consider an observed path (Xt0 , Xt1 , . . . , XtN ) where tj = jT/N and (Xt) satisfies (H1), (H2) and

(H3). Then, as in (5), define

CGX,N (r) =
2

N(N − 1)

∑∑
0 ≤ i < j ≤ N

exp

(−‖XiT/N −XjT/N‖2

4r2

)
,

and for any r > 0, it is clear that limN→∞ CGX,N (r) = CGX,T (r). Note that the choice of the norm is free from50

the result of Corollary 2.2. Hence we will consider the classical Euclidian norm ‖ · ‖e since it does not contain

any parameter of the process (contrarily to ‖·‖). As a consequence, and as it was already done in several papers

(see example [5] and [16]), a numerical procedure for estimating νG consists in two steps:

1. Select M ∈ N∗ and (r1, . . . , rM ) a family of positive real numbers. Theoretically ri → 0 and this means

that the ri should be chosen small enough numerically.55

2. Compute CGX,N (ri) for i = 1, . . . ,M . Then the slope of the least squares regression of
(

log
(
CGX,N (ri)

))
1≤i≤M

onto
(

log(ri)
)
1≤i≤M provides an estimator ν̂G of νG.

3.2. Estimation procedure of νG

The main drawback of the considered numerical procedure of computation of ν̂G is the large sensitivity of this

estimator to the choice of (r1, . . . , rM ). Several papers provide empirical rules for choosing this family in this60

case (see for instance [5], [16]) as well as in the computation of the box-counting dimension (see for instance

[10]).

Here, we will consider a data-driven procedure of choice (r1, . . . , rM ). First, consider a very large choice of (ri),

i.e. ri = exp(−10 i/M) and M = 300, and therefore − log(ri) ∈ [−10, 0]. We can observe the curve drawn

by the points
(
− log(ri) , log

(
CGX,N (ri)

))
on Figure 1. A linear region appears but for certain values of ri65

(approximately for log(ri) between −6 and −2 on this figure); ri do not have to be chosen too small or too

large for applying a least squares estimation. In the sequel, we develop a data-driven procedure for choosing

(r1, . . . , rM ). Note that the choice of M is not at all as crucial as the one of (r1, . . . , rM ) and set M = 30,

M = 100 or M = 300 does not significantly affect the estimation of νG.

Using the computation of E
[
CGX,N (r)

]
as it was done in [2], we deduce that the main term of its expansion is70

obtained for (j − i)/N ∈
[
r1/αi0−1 , r1/αi0

]
where i0 = min

{
k ∈ {1, . . . , d},

∑k
i=1 αi ≥ 1

}
when i0 exists, and

(j − i)/N ∈
[
r1/αd , T

]
when i0 does not exist, i.e. when

∑d
i=1 αi < 1. Therefore, this requires:

• when
∑d
i=1 αi ≥ 1, 1/N < r1/αi0 and thus r > N−αi0 .

• when
∑d
i=1 αi < 1, no condition, except r → 0.

But αi0−1 and αi0+1 are unknown. Then, we propose the following procedure for choosing (ri):75

1. Firstly, an estimation of α1 = min1≤j≤d{αj} is however possible. Note that indeed, for any 1 ≤ i < j ≤ N ,

we have E
[
‖XiT/N − XjT/N‖2

]
= 1

2

∑d
k=1 T

αk
∣∣ j−i
N

∣∣2αk . It is clear that for j−i
N → 0, the main term of

the expansion of E
[
‖XiT/N −XjT/N‖2

]
is given by 1

2T
α1
∣∣ j−i
N

∣∣2α1
. Therefore, an estimator of the Hurst
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Fig1_Zouhaier-eps-converted-to.pdf

Figure 1: Plot of
(
log
(
CG

X,N (ri)
))

1≤i≤M
onto

(
log(ri)

)
1≤i≤M

.
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parameter based on quadratic variations (see for instance [9]) applied to ‖XiT/N −XjT/N‖2 will provide

an estimation of α1. Hence, define:

α̂1 =
1

2 log 2
log

(∑N−2
k=1

∥∥X(k+2)T/N −XkT/N

∥∥2∑N−1
k=1

∥∥X(k+1)T/N −XkT/N

∥∥2
)
. (12)

Then, we know that αi0 ≥ α1. We deduce the following first numerical conditions for choosing ri:

• when
∑2
i=1 αi ≥ 1 (typically for d = 2 and if i0 = 2) and if α̂1 < 0.5 we deduce α̂i0 = α̂2 ≥ 1− α̂1,

inducing

ri ≥ rmin(α̂1) = N−(1−α̂1) for any i = 1, . . . ,M. (13)

But if α̂1 ≥ 0.5, we could only restrict the condition to

ri ≥ rmin(α̂1) = N−α̂1 , for any i = 1, . . . ,M, (14)

since we know that N−α1 ≥ N−αi0 .

• when
∑2
i=1 αi < 1 and therefore α̂1 < 0.5, no condition is required except ri → 0 and therefore we

could also chose the condition (13).

2. Secondly, it is required to choose ri → 0. Therefore, we chose

ri ≤ rmax =
1

2 logN
for any i = 1, . . . ,M.

Note that the added constant 2 has been chosen to optimize first Monte-Carlo experiments.80

3. Finally, we will only consider a family (r1, . . . , rM ) in the interval [rmin(α̂1), rmax]. We chose

ri = rmin(α̂1)
( rmax

rmin(α̂1)

)i/M
(15)

for obtaining an uniform grid of (log(ri)).

3.3. Monte-Carlo experiments

We applied the numerical procedure of estimation of νG for 1000 independent replications of fractional

Brownian motion trajectories generated with several combinations of parameters (α1, α2) ∈ (0, 1)2 and three

values of trajectory length N . The results are detailed in Table 1. On the basis of these results, we can say85

that:

• The convergence from ν̂G to νG seems to be occurring but is relatively slow;

• For values of νG close to 2, a small bias is present.
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N µ σ

α1 = 0.2, α2 = 0.9 N = 500 1.8704 0.085

νG = 1.889 N = 1000 1.8561 0.080

N = 2500 1.8517 0.073

α1 = 0.2, α2 = 0.4 N = 500 1.9626 0.060

νG = 2 N = 1000 1.9564 0.065

N = 2500 1.9688 0.047

α1 = 0.5, α2 = 0.5 N = 500 1.9164 0.058

νG = 2 N = 1000 1.9136 0.050

N = 2500 1.9118 0.048

α1 = 0.8, α2 = 0.6 N = 500 1.6078 0.103

νG = 1.5 N = 1000 1.5704 0.084

N = 2500 1.4986 0.085

α1 = 0.9, α2 = 0.9 N = 500 1.1661 0.104

νG = 1.111 N = 1000 1.1598 0.090

N = 2500 1.1336 0.093

Table 1: Behavior of ν̂G for multidimensional fractional Brownian motion process for d = 2 in several frameworks of parameters

and trajectory length N .
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mean(α̃i) sd(α̃i) mean(ν̃G)

α1 = 0.5 0.5000 0.0160 1.9766

and α2 = 0.9 0.4988 0.0161

νG = 1.5556

α1 = 0.6 0.6106 0.0161 1.6567

and α2 = 0.8 0.6000 0.0157

νG = 1.5

Table 2: Estimation of νG using univariate method.

3.4. Isometry of the procedure

If we exactly know that (X
(j)
t )j is a fractional Brownian motion with a parameter αj ∈ (0, 1), the estimation

of νG using the Gaussian local correlation procedure is not really interesting. It is clearly preferable to use a

method for estimating each αi such as the one proposed in (12) and then we use the estimator given by:

ν̃G = min
((1 +

∑i
k=1(α̃i − α̃k)

α̃i

)
1≤i≤d

, d
)
where α̃i =

1

2 log 2
log

∑N−2
k=1

(
X

(i)
(k+2)T/N −X

(i)
kT/N

)2∑N−1
k=1

(
X

(i)
(k+1)T/N −X

(i)
kT/N

)2
 . (16)

But the general case is rather that of multidimensional processes that depend on each other in such a way that:

Yt = QXt where = (Xt)t satisfies (H1), (H2) and (H3),

where Q is an orthogonal matrix such as QQ′ = Id. Note that Q is a constant matrix and is not supposed to90

depend on the time t. Simple computations show that (Yt) does not satisfy (H2).

Now, we assume that (YT/N , . . . , YT ) is observed. Then, we have ‖YiT/N − YjT/N‖e = ‖XiT/N −XjT/N‖e and

therefore the Gaussian local correlation or Hausdorff dimensions of the images of (Yt)0≤t≤T and (Xt)0≤t≤T are

the same. Also, we deduce that the estimator ν̂G is the same using X or Y .

Now, if we would like to use ν̃G applied to (YT/N , . . . , YT ) for estimating νG without knowing Q, then the95

estimators α̂i are not at all consistent. To illustrate this, we consider a special case when d = 2, N = 1000 and

Q = 1√
2

( 1 1

1 −1

)
. Then, after 1000 independent replications, we obtain the results shown in Table 2. It is

clear that the estimator ν̃G is not at all consistent.

4. Conclusion

This article deals the roughness of multidimensional stochastic process by studying the asymptotic behavior100

of a modification of the most used occupation measure. By replacing the hard indicator function by Gaussian

kernel one on the occupation measure, first, we determine, the theoretical value of local correlation dimension
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of multidimensional fractional Brownian motion with independent components. Second, we give a range of

bandwidth values to obtain a consistent least square estimator of the local correlation dimension for such

multivariate stochastic process. Finally, we confirms our theoretical results by a simulation study on the105

multidimensional fractional Brownian motion for different values of local correlation dimension and different

length of trajectory.
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