Correction d'exercices de la feuille n^o 3:

Formes linéaires et espace dual

(1) (*) Soit $E = \mathbb{R}^n[X]$. L'application $P \in E \mapsto P(1)$ est-elle une forme linéaire sur E?

Proof. Pour tout réel λ et pour tout polynômes P et Q de E, il est clair que $(\lambda P + Q)(1) = \lambda P(1) + Q(1)$. Il s'agit bien d'une forme linéaire sur E.

(2) (**) Soit E un espace vectoriel de dimension finie n et soit u et v deux formes linéaires sur E telles que ker $u \neq \ker v$. Déterminer les dimensions de ker $u + \ker v$ et de ker $u \cap \ker v$.

Proof. On sait que ker u et ker v sont des s.e.v. de dimension n-1. Comme ker $u \neq \ker v$, il existe F s.e.v. de ker v de dimension 1 tel que $E = \ker u + F$ (si F n'existait pas cela signifierait que $\ker u = \ker v$). Donc $\dim(\ker u + \ker v) = n$. De plus d'après le cours, on sait que dim $(\ker u \cap \ker v) = n - 2$.

(3) (**) Soit $E = \mathbb{R}^n$. Pour $x = (x_1, \dots, x_n) \in E$, on pose $f_i(x) = x_i + x_{i+1}$ pour $i = 1, \dots, n-1$ et $f_n(x) = x_n + x_1$. Montrer que la famille $(f_i)_{1 \le i \le n}$ est une famille de formes linéaires sur E. A quelle condition est-ce une base de l'espace dual E^* ? Dans le case où c'est bien une base duale de cette base.

Proof. $(f_i)_{1 \leq i \leq n}$ est une famille de formes linéaires car pour $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ dans E et pour $1 \le i \le n-1, \ f_i(\lambda x+y) = (\lambda x_i+y_i) + (\lambda x_{i+1}+y_{i+1}) = \lambda(x_i+x_{i+1}) + (y_i+y_{i+1}).$ On peut faire de même pour $f_n(\lambda x + y) = (\lambda x_n + y_n) + (\lambda x_0 + y_0) = \lambda (x_n + x_0) + (y_n + y_0).$

La famille $(f_i)_{1 \leq i \leq n}$ est une base si et seulement si n est impair. En effet, comme E est de dimension finie, il suffit de montrer que c'est une famille libre. Soient $(\lambda_i)_{i=1,\ldots,n}$ telles que $\sum_i \lambda_i f_i(x) = 0 \ \forall x$.

La dernière équation est vraie en particulier pour $x = (0, \dots, 0, 1, 0, \dots, 0)$ (on peut faire bouger la position du 1). Ce

$$\begin{cases} \lambda_1 + \lambda_n &= 0\\ \lambda_1 + \lambda_2 &= 0\\ \vdots\\ \lambda_{n-1} + \lambda_n &= 0 \end{cases}$$

Donc $\lambda_1 = -\lambda_n$ et $\lambda_1 = -\lambda_2 = \cdots = (-1)^{n-1}\lambda_n$. Lorsque n est impair $\lambda_i = 0 \ \forall i$, sinon on peut toujours trouver des solutions non nulles au système.

(4) (**) Soit $E = \mathbb{R}_n[X]$. Montrer qu'il existe $q \in E$ tel que, pour tout $p \in \mathbb{R}_n[X]$ on ait

$$p(1) = \int_0^1 p(t)q(t)dt.$$

Calculer q dans le cas n=2.

Proof. D'après le théorème de représentation de Riesz, toute forme linéaire s'écrit de manière unique comme un produit scalaire par rapport à un vecteur. Or, l'application $P \in E \mapsto P(1)$ est une forme linéaire sur E (cf. exercice 1) et $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$ est bien un produit scalaire, d'où l'existence de q.

Cas
$$n=2$$
. Soit $q(t)=t^2+a_1t+a_0$, on a : $p(1)=\int_0^1 p(t)(t^2+a_1t+a_0)dt$, pour tout polynôme p de E , en particulier pour les polynômes $p(t)=1$, $p(t)=t$ et $p(t)=t^2$. Il suffit alors de résoudre le système suivant
$$\begin{cases} 1=\int_0^1 (t^2+a_1t+a_0)dt \\ 1=\int_0^1 (t^3+a_1t^2+a_0t)dt \\ 1=\int_0^1 (t^4+a_1t^3+a_0t^2)dt \end{cases}$$

(5) (**) Soit $E = \mathbb{R}^n[X]$, soit $a \in \mathbb{R}$ et pour tout $k = 0, 1, \dots, n$, on pose $P_k(X) = (X - a)^k$. Montrer que $e = (P_0, P_1, \dots, P_n)$ est une base de E. Déterminer la base e^* duale de e et calculer les composantes sur e^* de la forme linéaire $\phi: P \mapsto \int_0^a P(t)dt$.

 $Proof.\ e = (P_0, P_1, \dots, P_n)$ est une base de E car c'est une famille libre. Prenons $(\lambda_i)_{i=1,\dots,n}$ telles que $\sum_i \lambda_i(X-I)$ $a)^i=0$. En dérivant n fois cette équation, on a : $n!\lambda_n=0$, avec la (n-1)-ème dérivée on trouve que $\lambda_{n-1}=0$ et ainsi de suite pour avoir $\lambda_i = 0 \ \forall i$.

 e^* est une base duale de e si pour tout $i, j = 1, \dots, n, e_j^*(P_i) = \delta_{ij}$.

Ceci est vrai pour
$$P \in E \mapsto \begin{cases} \frac{d^{(k)}P}{k!} & \text{si degr\'e}(P) \leq k \\ 0 & sinon \end{cases}$$

(6) (**) Soit $E = \mathbb{R}^n[X]$, soit $(b_0, \dots, b_n) \in \mathbb{R}^{n+1}$. Pour tout $i = 0, 1, \dots, n$, on note $u_i : P \in E \mapsto$ $P(b_i)$. Montrer que la famille (u_0, u_1, \dots, u_n) est une base de E^* si et seulement si les b_i sont tous distincts.

1

 $\begin{array}{l} \textit{Proof.} \;\; \text{Soient} \;\; (\lambda_i)_{i=1,\ldots,n} \;\; \text{telles que pour tout} \;\; P \in E, \sum_i \lambda_i u_i(P) = 0. \\ \text{En particulier pour} \;\; P_j = \prod_{i=1,i\neq j} (X-b_i). \;\; \text{Or} \;\; \left\{ \begin{array}{ll} u_i(P_j) = 0 & \text{si} \;\; i \neq j \\ u_i(P_i) = \prod_{k=1,k\neq i} (b_i-b_k) & \text{si} \;\; i=j \end{array} \right. \;\; \text{On a alors, pour tout} \;\; i, \\ \lambda_i \prod_{k=1,k\neq i} (b_i-b_k) = 0. \;\; \text{Par suite,} \;\; \lambda_i = 0 \;\; \text{si et seulement si les} \;\; b_i \;\; \text{sont tous distincts.} \end{array}$

(7) (*) Soit $E = \mathbb{R}^n[X]$. Montrer que l'ensemble des polynômes P de E tels que $\int_{-1}^1 P(x) dx = 0$ est bien un s.e.v. de E. Donner une base de cet ensemble.

Proof. L'ensemble des polynômes P de E tels que $\int_0^1 P(x) dx$ est bien un s.e.v. de E car c'est le noyau d'une forme linéaire non nulle de E^* . Une base de cet hyperplan de E est la base $(X^k - \frac{1}{k+1})_{k=1,...,n}$.