

Université Paris I, Panthéon - Sorbonne Licence M.A.S.S.

Feuilles de TD du cours d'Analyse S4

JEAN-MARC BARDET (UNIVERSITÉ PARIS 1, SAMOS)

2

Feuille n^o 1:

Equations différentielles linéaires

- (1) (**) On considère l'équation différentielle $y' = \sin y$ avec $y(0) = y_0$ et $y_0 \in]-\pi,\pi[$. Montrer qu'il existe une unique solution à ce problème de Cauchy. La déterminer lorsque $y_0 = 0$. Si $y_0 \in]0,\pi[$, montrer que toute solution appartient est croissante. Avec le changement de variable $u = \ln |\tan(y/2)|$, déterminer une solution maximale de l'équation lorsque $y_0 \in]0,\pi[$, puis en trouver une lorsque $y_0 \in]-\pi,0[$.
- (2) (**) On considère l'équation différentielle $2y'' = e^y$ avec y(0) = 0 et y'(0) = 1. Montrer qu'il existe une unique solution à ce problème de Cauchy. Déterminer une solution maximale. De même si y'(0) = y(0) = 0.
- (3) (*) Résoudre l'équation différentielle $y' 2y = \sin(x)$.
- (4) (*) Résoudre l'équation différentielle $y'' 2y' + y = x \cos x$.
- (5) (*) Résoudre l'équation différentielle $y'' 2y' + y = 6xe^x$.
- (6) (*) Résoudre l'équation différentielle $y^{(4)} + 2y'' + y = 1$.
- (7) (*) Résoudre l'équation différentielle $y'' + y = \cos(\omega x)$ avec $\omega \in \mathbb{R}$ fixé.
- (8) (**) Déterminer les solutions maximales des équations différentielles suivantes avec la condition initiale y(1) = 0:

$$(2+x)y' = 2 - y xy' + y = \cos x 3xy' - 4y = x 2x(1-x)y' + (1-2x)y = 1 x(x+1)y' + y = \arctan x x(x^2-1)y' + 2y = x\ln x - x^2.$$

- (9) (**) Déterminer une solution maximale des équations différentielles suivantes: $(1+x^2)y'-2xy=0; \ y'-2y=xe^{-|x|}; \ xy'+y-\ln|x|=0; \ (1+\frac{1}{x})y'-y=0.$
- (10) (***) Chercher les solutions de l'équation différentielle $x(x^2-1)y'+2y=x^2$. Existe-t-il une solution définie sur \mathbb{R} ?
- (11) (**) Déterminer une solution maximale des équations différentielles $y' y \tan x = (1 + \cos x)^{-1}$ et $y' \cos x + y \sin x = 1 + x$.
- (12) (***) Soit f une application continue de \mathbb{R} dans \mathbb{R} admettant une limite finie ℓ en $+\infty$. Montrer que toute solution de l'équation différentielle y' + y = f(x) admet une limite finie en $+\infty$.
- (13) (***) Existe-t-il des solutions de classe C^1 sur \mathbb{R} de l'équation différentielle $y' + 2\sqrt{y} = 0$?
- (14) (**) Déterminer une solution maximale de l'équation différentielle $y'' + y = e^{-|x|}$.
- (15) (**) Déterminer une solution maximale de l'équation différentielle $xy'' y' 4x^3y = 0$ après avoir vérifié que $y(x) = e^{x^2}$ est solution.
- (16) (**) Déterminer une solution maximale de l'équation différentielle $(1 + x^2)y'' + xy' y = 0$ en effectuant le changement de variable $x = \sinh t$.
- (17) (**) Déterminer les éventuelles solutions sur \mathbb{R} de l'équation différentielle $x^2y'' + 4xy' + (2-x^2)y = 1$ en posant $u = x^2y$. Quelle est leur classe?
- (18) (***) Soit f une application de classe C^1 sur \mathbb{R} , monotone et admettant une limite finie ℓ en $+\infty$. Montrer que toute solution de l'équation différentielle y'' + y = f(x) sont bornées sur \mathbb{R}^+ et que

cette équation admet une unique solution ayant une limite finie en $+\infty$.

- (19) (**) Déterminer la solution maximale de l'équation différentielle $y' = -y^2$ avec la condition initiale y(0) = 1.
- (20) (**) Déterminer une solution maximale de l'équation différentielle $x^2y'' 2y' + 2y = x^4\cos x 1$ après avoir remarqué que y(x) = 1 est solution de l'équation homogène associée.
- (21) (**) Trouver toutes les applications $f: \mathbb{R}_+^* \mapsto \mathbb{R}$ dérivables et vérifiant f'(t) = f(1/t) pour tout $t \in \mathbb{R}_+^*$.

Feuille n^o 2:

Séries entières

- (1) (*) Soient $\sum a_n z^n$ une série entière et deux nombres h et k tels que $0 < h < |a_n| < k$ pour tout n. Quel est le rayon de convergence de la série?
- (2) (**) Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Quel est le rayon de convergence de la série entière $\sum a_n^2 z^n$?
- (3) (*) Soient $\sum a_n z^n$ une série entière telle que $a_n = n$ si n est impair ou nul et $a_n = (1 + \frac{1}{n})^{n^2}$ si n est pair strictement positif. Quel est le rayon de convergence de la série?
- (4) (*) Déterminer le rayon de convergence de la série entière $\sum a_n z^n$ lorsque:

4

1)
$$a_n = \frac{n^2}{3^n + n}$$
, 2) $a_n = \frac{n^n}{n!}$, 3) $a_n = \frac{1}{(1 + \sqrt{n})^n}$, 4) $a_n = \frac{(-1)^n}{n(n+1)}$,

5)
$$a_n = n^{1/n} - 1$$
, 6) $a_n = \frac{ch(n)}{n}$, 7) $a_n = \sin(\pi \sqrt{n^2 + 1})$

8)
$$a_n = \left(e - \left(1 + \frac{1}{n}\right)^n\right)$$
 9) $a_n = a^{\sqrt{n}}$ $(a \in \mathbb{R}_+^*)$

- (5) (***) Soit a_n la n-ième décimale de π . Quel est le rayon de convergence de $\sum a_n z^n$. (Rappel: π est irrationnel.)
- (6) (**) Soit $(a_n)_{n\geq 0}$ une suite réelle, telle que $\lim_{n\to\infty} a_n = 0$ et telle que $\sum a_n$ diverge. Quel est le rayon de convergence de $\sum a_n z^n$?
- (7) (*/**) Etudier la convergence des séries entières suivantes, sans oublier la convergence sur le bord du disque de convergence:

1)
$$\sum \frac{n+1}{n^2+1} z^n$$
, 2) $\sum \frac{(n+1)^2}{2^n} z^n$, 3) $\sum \frac{3^n}{n!} z^n$, 4) $\sum \frac{1}{n} z^n$,

5)
$$\sum \sqrt{n}z^n$$
, 6) $\sum \frac{1}{n^3}z^n$, 7) $\sum \left(\frac{1}{3} + \dots + \frac{1}{4n^2 - 1}\right)z^n$,

8)
$$\sum \frac{(-1)^{n-1}}{(2n-1)3^{2n-1}} z^n$$
, 9) $\sum \frac{1}{n^2 2^n} z^n$, 10) $\sum nz^n$, 11) $\sum n^{(-1)^n} z^n$,

12)
$$\sum z^{n!}$$
, 13) $\sum (\sin n)^n z^n$, 14) $\sum (1+in)z^n$, 15) $\sum \frac{\sqrt{n\ln n}}{n^2+1}z^n$.

- (8) (**) Rayon de convergence et étude sur le cercle de convergence de la série entière $\sum_{n=1}^{\infty} \sin \frac{1}{\sqrt{n}} x^n$.
- (9) (***) Donner un exemple de série entière telle que
 - (a) en tout point du cercle de convergence, la série numérique associée converge.
 - (b) en tout point du cercle de convergence, la série numérique associée diverge.
 - (c) la série numérique associée admet $p \in \mathbb{N}$, nombre fixé, points de divergence sur son cercle de convergence.
- (10) (**) Déterminer le rayon de convergence et calculer la somme des séries entières réelles suivantes :

1)
$$\sum_{n>0} (3n+1)x^{3n}$$
, 2) $\sum_{n>0} \frac{\sin n}{n!} x^n$, 3) $\sum_{n>0} (2^n+3^n)x^n$, 4) $\sum_{n>0} \frac{x^{3n}}{(3n)!}$

5)
$$\sum_{n\geq 0} \sin n \, x^n$$
, 6) $\sum_{n\geq 1} \frac{x^n}{1+2+\ldots+n}$, 7) $\sum_{n\geq 0} \frac{(-1)^n \omega^{2n}}{(2n)! 2^{2n-1}} x^{2n}$,

8)
$$\sum_{n>0} \frac{(-1)^n}{4n^2 - 1} x^{2n}$$
 9) $\sum_{n>1} \frac{1}{n(n+1)(2n+1)} x^n$.

- (11) (***) Soit $(a_n)_{n\geq 0}$ une suite réelle telle que $\lim_{n\to +\infty}\sum_{i=0}^{n-1}a_i=1$. Trouver le rayon de convergence de la série entière $\sum_{n=0}^{+\infty}a_nx^n$. Indication: introduire $A_n=\sum_{i=0}^{n-1}a_i$ et calculer $(1-x)\sum_{k=0}^{n-1}A_kx^k$.
- (12) (***) Après avoir montré qu'il existe, calculer le réel $\alpha = \sum_{n=3}^{+\infty} \frac{1}{2^n(n+1)(n-2)}$.
- (13) (**) Soit $a \in \mathbb{R} \setminus \pi\mathbb{Z}$. On considère les séries $\sum_{n\geq 0} \frac{\cos(na)}{(\sin a)^n} \frac{x^n}{n!}$ et $\sum_{n\geq 0} \frac{\sin(na)}{(\sin a)^n} \frac{x^n}{n!}$ de somme respective S(x) et T(x).
 - (a) Montrer que les rayons de convergence de ces deux séries sont infinis. Calculer leurs sommes. (On calculera d'abord S(x) + iT(x).)
 - (b) Montrer directement que T vérifie une équation différentielle du second ordre et retrouver ainsi l'expression de T.
- (14) (*/**) Développer en série entière les fonctions suivantes et préciser le rayon de convergence :

$$\frac{1}{(1+x^2)(1-x)}$$
 au voisinage de 0 $\frac{1}{x}$ au voisinage de 2

$$\ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$
 au voisinage de 0 $e^{x(x-2)}$ au voisinage de 1

$${\rm Arctan} \frac{1-x^2}{1+x^2}$$
 au voisinage de 0 — $\ln{(1+x-2x^2)}$ au voisinage de 0

$$\int_0^x \frac{\sin t}{t} dt \text{ au voisinage de 0} \qquad \qquad \frac{e^{-x}}{1+x} \text{ au voisinage de 0}$$

- (15) (**) Soit la fonction f définie sur $]-1,+\infty[$ par $f(x)=\frac{1}{x}\ln{(1+x)}$ si $x\neq 0$ et f(0)=1. Développer f en série entière au voisinage de 0. Déterminer le rayon de convergence de cette série entière et démontrer qu'elle converge uniformément sur [0,1]. En déduire que $\int_0^1 \frac{1}{x} \ln{(1+x)} \ dx = \frac{1}{2} \sum_1^\infty \frac{1}{n^2}$.
- (16) (**) On considère l'équation différentielle 4xy'' + 2y' + y = 0, où y est une fonction de classe C^2 de la variable réelle x. On se propose de trouver une solution développable en série entière

$$y(x) = \sum_{n>0} a_n x^n$$
, vérifiant $y(0) = 1$.

- (a) calculer a_n en fonction de a_{n-1} pour $n \ge 1$. En déduire: $a_n = \frac{(-1)^n}{(2n)!}$ pour $n \ge 0$. Quel est le domaine de validité de la solution y(x) ainsi obtenue?
- (b) Montrer que

$$y(x) = \begin{cases} ch(\sqrt{-x}) & \text{pour } x \le 0\\ \cos(\sqrt{x}) & \text{pour } x \ge 0 \end{cases}$$

(17) (**) Déterminer les solutions développables en série entière autour de l'origine de l'équation différentielle y'' - xy = 0. Obtient-on ainsi toutes les solutions?

- (18) (**) Déterminer les solutions développables en série entière autour de l'origine de l'équation différentielle 2xy'' + 2y' + y = 0.
- (19) (***) On considère l'équation différentielle du second ordre

$$y'' + \omega^2 y = 3\omega^2 \cos^2\left(\frac{\omega x}{4}\right)$$

avec les conditions initiales y(0) = 4 et y'(0) = 0. On suppose qu'il existe une solution de cette équation développable en série entière au voisinage de 0. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ cette solution.

- (a) Calculer a_0 , a_1 , a_2 et a_3 . Déterminer une relation de récurrence entre les coefficients a_n . En déduire l'expression de a_n .
- (b) Déterminer le rayon de convergence de la série entière ainsi obtenue et calculer sa somme.
- (c) Retrouver ce résultat par une intégration directe de l'équation différentielle donnée.
- (d) Déduire de ce qui précède la somme des séries numériques $\sum \frac{(-1)^n \pi^{2n}}{(2n)!} \left(\frac{1}{2^{2n-1}} + \frac{1}{2}\right)$ et $\sum \frac{(-1)^n 2^{2n} \pi^{2n}}{(2n)!}$.
- (20) (**) Déterminer une équation différentielle du premier ordre admettant pour solution $f: x \mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$. En déduire un développement en série entière de f à l'origine. Quel est le développement en série entière de la fonction $x \mapsto (\arcsin x)^2$ à l'origine?
- (21) (**) Développer en série entière $f(x) = \sin(\alpha \arcsin x)$. Indication: déterminer une équation différentielle satisfaite par f.
- (22) (**) Démontrer que $\int_0^1 \frac{\operatorname{Arctan} x}{x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$.
- (23) (***) Montrer que l'intégrale $I = \int_0^1 \frac{dt}{\sqrt{t}\sqrt{1-t^4}}$ est convergente, et que $I = 2 + \sum_{n=1}^{+\infty} \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot (2n)} \frac{2}{8n+1}$.

Feuille n^o 3:

Intégrales dépendant d'un paramètre

- (1) (*) Montrer que $I_n = \int_0^1 \frac{1}{1+x^n} dx$ existe pour tout $n \in \mathbb{N}^*$. Calculer la limite ℓ de $(I_n)_n$. Trouver un équivalent en $+\infty$ de $J_n = I_n \ell$.
- (2) (*) Montrer que $I_n = \int_0^\infty \frac{e^{-x}}{n+x} dx$ existe pour tout $n \in \mathbb{N}$. Calculer la limite ℓ de $(I_n)_n$.
- (3) (**) Déterminer, si elle existe, $\lim_{n\to\infty} \int_{\infty}^{\infty} \frac{\sin^n x}{x^2} dx$.
- (4) (**) Soit la suite $(I_n)_{n\in\mathbb{N}}$ avec $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x^3}} dx$. Montrer que I_n existe pour tout $n \in \mathbb{N}$ et étudier la convergence de $(I_n)_{n\in\mathbb{N}}$.
- (5) (**) Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue et bornée. Après avoir montré son existence, calculer $\lim_{n \to \infty} \sqrt{\frac{n}{\pi}} \int_{-\infty}^{\infty} e^{-nx^2} f(x) dx.$
- (6) (**) Pour tout entier $n \geq 3$, on définit $f_n(x) = x(1+x)^{-n}$ pour $x \in [1, \infty[$. Montrer que les f_n sont intégrables sur $[1, \infty[$. Montrer que la série $\sum f_n$ converge simplement vers une fonction g à déterminer. En déduire que la série de terme général $u_n = \int_1^\infty f_n(x) dx$ converge, et calculer sa somme.
- (7) (*) Donner le domaine de définition, de continuité et dérivabilité de la fonction $f(x) = \int_0^1 e^{|x-t|} dt$.
- (8) (*) Donner le domaine de définition, de continuité et dérivabilité de la fonction $f(x) = \int_0^1 \frac{\sin(xt)}{t} dt$. En déduire que f est de classe C^{∞} sur \mathbb{R} .
- (9) (**) Montrer que la fonction $x \mapsto \int_0^{\pi/2} t^x \ln(\tan t) dt$ est de classe \mathcal{C}^{∞} sur $]-1,\infty[$.
- (10) (**) Soit $f: [0, \infty[\to \mathbb{R}$ une fonction continue et intégrable. Montrer que $\lim_{x \to \infty} \frac{1}{x} \int_0^x t f(t) dt = 0$.
- (11) (***) Soit $0 < \alpha < \beta$. Montrer que la fonction $f(t) = (e^{-\beta t} e^{-\alpha t})t^{-1}$ est intégrable sur \mathbb{R}_+ . Après avoir posé $g:(x,t)=(e^{-xt}-e^{-t})t^{-1}$, montrer que g est continue sur $[1,\infty]\times]0,\infty[$ et vérifie le théorème de dérivation d'une intégrale paramétrée (intégration par rapport à t). En déduire $\int_0^\infty \frac{\partial g}{\partial x}(x,t)dt \text{ pour } x \geq 1, \text{ puis en posant } x = \beta/\alpha, \text{ déterminer } \int_0^\infty f(t)dt.$
- (12) (**) Soit $f(x) = \int_0^1 e^{-tx} \ln(t) dt$. Quel est l'ensemble de définition, de continuité et de dérivabilité de f? Déterminer $\lim_{x\to +\infty} f(x)$. Sur quel ensemble la fonction f est-elle de classe \mathcal{C}^1 ? Trouver une équation différentielle vérifiée par f et en déduire l'expression de f.
- (13) (***) Soit $F(x) = \int_0^\infty \frac{e^{-|x+u^2|}}{1+u^2} du$. Montrer que F est définie et continue sur \mathbb{R} . Quel est son ensemble de dérivabilité? Montrer que F est intégrable sur \mathbb{R} et montrer que $\int_0^\infty F(x) dx = 2\pi$.
- (14) (***) Pour tout $\rho \in \mathbb{R}$ tel que $|\rho| \neq 1$, on pose $I(\rho) = \int_0^{\pi} \ln(1 2\rho \cos \theta + \rho^2) d\theta$. A l'aide de changements de variables, calculer $I(-\rho)$ et $I(1/\rho)$ en fonction de $I(\rho)$. Montrer que $I(\rho^2) = 2I(\rho)$ et en déduire pour tout $\rho \in]-1,1[$ que $I(\rho) = 0$, puis l'expression de $I(\rho)$ pour $|\rho| > 1$.

- (15) (***) On pose $F(x) = \int_0^x \frac{\sin t}{t} e^{-tx} dt$ pour tout $x \in \mathbb{R}_+$. Montrer que F est dérivable sur \mathbb{R}_+ et calculer F'(x). En déduire $\int_0^\infty \frac{\sin t}{t} dt$.
- (16) (**) Donner le domaine de définition, de continuité et dérivabilité de la fonction $f(x) = \int_0^\infty e^{-t^2} \cos(tx) dt$. Calculer f' et en déduire que f est solution d'une équation différentielle dont la résolution permet de donner l'expression exacte de f.
- (17) (***) Soit a et b deux entiers non nuls. Pour tout $n \in \mathbb{N}$, soit le polynôme $P_n(x) = x^n(bx a)^n/n$ (a) Montrer que pour tout $n \in \mathbb{N}^*$, P_n et toutes ses dérivées prennent des valeurs entières en x = 0 et x = a/b.
 - (b) Montrer que $I_n = \int_0^{\pi} P_n(x) dx \xrightarrow[n \to +\infty]{} 0.$
 - (c) On suppose que l'on peut écrire π sous la forme $\pi = a/b$. Montrer que $(I_n)_{n \in \mathbb{N}}$ est une suite non nulle à valeur dans \mathbb{Z} . En conclure que π est irrationnel.
 - (d) Soit $r \in \mathbb{Q}$ un rationnel strictement positif. En considérant la suite $(J_n)_{n \in \mathbb{N}}$ telle que $J_n = \int_0^r P_n(t)e^t dt$, montrer que e^r n'est pas un rationnel.
- (18) (***) Soit $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ pour x > 0.
 - (a) En utilisant le changement de variable $t = x + u\sqrt{x}$, montrer que $\Gamma(x+1) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{\infty} f(x,u) du$, où f est une fonction à préciser, nulle pour tout couple (x,u) tel que $u \le -\sqrt{x}$.
 - (b) Déterminer la limite de f à u fixé quand $x \to \infty$.
 - (c) Pour $x \ge 1$, montrer que pour tout $u \ge 0$, on a $0 < f(x,u) \le (1+u)e^{-u}$, puis que pour $u_i n \sqrt{x}$, 0[, $0 < f(x,u) \le e^{-u^2/2}$.
 - (d) En déduire que $\Gamma(x+1) \sim (x/e)^x \sqrt{2\pi x}$ quand $x \to \infty$, puis retrouver le célèbre équivalent $n \sim (n/e)^n \sqrt{2\pi n}$ quand $n \to \infty$.
- (19) (***) Etudier l'existence, la continuité et la dérivabilité de la fonction $f(x) = \int_0^x \sin(1/t) dt$.
- (20) (***) Montrer que $\int_0^1 \frac{\ln(1-t)\ln t}{t} dt = \sum_{n=1}^\infty \frac{1}{n^3}$.
- (21) (***) Etudier l'existence, la continuité et la dérivabilité de la fonction $f(x) = \int_x^{x^2} \frac{1}{\ln t} dt$. Déterminer $\lim_{x \to +\infty} f(x)$.

Feuille n^o 4:

Intégrales multiples

- (1) (*) Calculer $\int \int_{\Delta} \frac{dxdy}{(1+x+y)^3}$ où $\Delta = \{(x,y) \in [0,\infty[^2, x+y \le 1]\}.$
- (2) (*) Calculer $\int \int_{\Delta} \frac{x}{\sqrt{x^2 y^2}} dx dy$ où $\Delta = \{(x, y) \in \mathbb{R}^2, 0 \le y \le x \le 1\}.$
- (3) (*) Calculer $\int \int_{\Delta} \frac{y}{\sqrt{a^2 + y^2}} dx dy$ où $\Delta = \{(x, y) \in [0, \infty[^2, x^2 + y^2 \le a^2]\}$ avec a > 0 fixé.
- (4) (*) A l'aide du changement de variable x' = x/a et y' = y/b, calculer $\int \int_{\Delta} (x^2 y^2) dx dy$ où $\Delta = \{(x,y) \in [0,\infty[^2, x^2/a^2 + y^2/b^2 \le 1]\}$ avec a,b>0 fixés.
- (5) (*) Calculer $\int \int \int_{\Delta} xyz \, dx dy dz$, puis $\int \int \int_{\Delta} (x+y+z+1)^{-2} dx dy dz$, où $\Delta = \{(x,y,z) \in [0,\infty[^3,\,x+y+z\leq 1\}.$
- (6) (*) Calculer $\int_0^{\pi/2} \int_0^{\pi/2} \int_0^{\pi/2} \cos(x+y-z) \, dx dy$.
- (7) (**) Calculer $\int \int_{\Delta} x \cos(xy) \cos^2(rx) dx dy$ où $\Delta = \{(x,y) \in]0, 1/2[\times]0, r[\}$ avec r > 0 fixé.
- (8) (**) Déterminer l'ensemble des valeurs de α telles que $I_{\alpha} = \int_{1}^{\infty} \int_{1}^{\infty} (x+2y)^{\alpha} dxdy$ existe, auquel cas, calculer I_{α} . Même question pour $J_{\alpha} = \int_{0}^{1} \int_{0}^{1} (x+2y)^{\alpha} dxdy$.
- (9) (***) Déterminer l'ensemble des valeurs de α telles que $I_{\alpha} = \int_{1}^{\infty} \int_{1}^{\infty} \frac{\sin x}{x + y^{\alpha}} dx dy$ existe (l'intégrale est-elle alors semi-convergente?). Même question pour $J_{\alpha} = \int_{0}^{1} \int_{0}^{1} \frac{\sin x}{x + y^{\alpha}} dx dy$.
- (10) (***) Montrer que l'intégrale $I_{\alpha} = \int_{0}^{\infty} \int_{0}^{\infty} \sin\left(\frac{1}{(x+y)^{2}}\right) dx dy$ existe. Est-elle absolument ou semi-convergente?
- (11) (**) Calculer le volume de l'intersection entre la boule unité et un cylindre dont l'axe principal passe en 0 et le rayon est 0 < r < 1.
- (12) (**) Calculer le volume de l'ensemble $\Delta = \{(x, y, z) \in \mathbb{R}^3, x^2 + z^2 \le a^2 \text{ et } y^2 + z^2 \le a^2 \}$ avec a > 0 (on pourra commencer par tracer Δ).
- (13) (**) Montrer que la fonction $\phi: x \in \mathbb{R} \mapsto \int_x^\infty e^{-t^2} dt$ existe sur \mathbb{R} , puis qu'elle est intégrable sur \mathbb{R}_+ . Calculer $\int_0^\infty \phi(x) dx$.
- (14) (***) Pour $(a,b) \in]1, \infty[^2, \text{ calculer } \int \ln \left(\frac{a-\cos t}{b-\cos t}\right) dt$ (on pourra introduire une fonction à deux variables et utiliser le Théorème de Fubini).
- (15) (***) Calculer le volume d'une boule de rayon est r > 0 dans \mathbb{R}^n .
- (16) (***) Soit $\Delta' = \{(u, v) \in \mathbb{R}^2, u \le 1 \text{ et } -u \le v \le u\}.$ (a) Faire un tracé de Δ' .
 - (b) Calculer $\int \int_{\Delta'} u^2 e^{uv} du dv$.

- (c) Soit le changement de variable $\psi(u,v)=\left((u+v)/\sqrt{2},(u+v)/\sqrt{2}\right)$. Est-ce bien un \mathcal{C}^1 -difféomorphisme sur Δ' ? Quelle transformation géométrique représente ce changement de variable? Déterminer $\Delta=\psi(\Delta')$.
- (d) Effectuer ce changement de variable pour en déduire la valeur de $\int \int_{\Delta} (x+y)^2 e^{x^2-y^2} dx dy$.
- (17) (***) Soit $\Delta = \{(x, y) \in \mathbb{R}^2, y \le x^2 + y^2 \le 1\}.$
 - (a) Tracer de Δ .
 - (b) A l'aide d'un changement de variable en polaire, calculer $\int \int_{\Delta} \frac{dxdy}{(1+x^2+y^2)^2}$.
- (18) (***) Soit A et B deux matrices carrées (2, 2) symétriques et définies positives. Montrer (en utilisant la diagonalisation de A) que $\int \int_{\mathbb{R}^2} e^{-(u,v)A^t(u,v)} du dv = \frac{\pi}{\det A}$. En utilisant une inégalité de Cauchy-Schwarz, montrer que $\det(A+B) \geq 4\sqrt{\det A \det B}$.