Partiel d'Analyse S4, L2, septembre 2006

Exercice 1. Soit φ la fonction définie sur $\mathbb R$ par l'expression :

$$\varphi(x) = e^{x^2}.$$

On rappelle que φ est partout strictement positive et que $\frac{1}{\varphi(x)} = e^{-x^2}$.

Les parties **A** et **B** sont dans une large mesure indépendantes (sauf en ce qui concerne les notations). En revanche, les questions à l'intérieur d'une partie se suivent.

PARTIE A.

1. Montrer que φ est développable en série entière en 0. Déterminer le rayon de convergence de la série entière. Justifier que φ est somme de sa série entière sur \mathbb{R} . On note $\sum_{n=0}^{+\infty} \alpha_n x^n$. la série obtenue. Certains des α_n sont nuls, aurait-on pu le prévoir sans calculs (justifier).

2. Déterminer le développement en série entière de $1/\varphi(x)$. On note $\sum_{n=0}^{+\infty} \beta_n x^n$ le développement obtenu. Déterminer une relation entre les α_n et les β_n . On admettra que $1/\varphi$ est somme de sa série entière.

3. On introduit la fonction :

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2} dt.$$

Cette fonction est très utile en statistiques, car si une v.a. X suit une loi normale centrée réduite, la probabilité pour que $X \le x$ est $1/2 + \Phi(x)$.

3.a. A l'aide de la question 2, déterminer le développement en série entière de Φ .

3.b. Comment utiliser ce développement pour déterminer un nombre I de sorte que $|I - \Phi(1)| \le 10^{-5}$?

4. On introduit le fonction f définie sur \mathbb{R} par la relation :

$$f(x) = \varphi(x)\Phi(x).$$

4.a. Sans calculer le développement, justifier que f est développable en série entière sur \mathbb{R} . On note $\sum_{n=0}^{+\infty} \gamma_n x^n$.

4.b. Toujours sans calculer les coefficients, justifier que certains γ_n sont nécessairement nuls (lesquels)?

4.c. Exprimer les autres coefficients γ_n sous forme d'une somme finie (on ne calculera pas ces sommes).

PARTIE B.

Nous allons déterminer autrement le développement en série entière de f.

5. Sans utiliser la question **4.a.**, montrer que la fonction f est de classe C^1 et vérifie la relation $f'(x) = 2xf(x) + \frac{1}{\sqrt{2\pi}}$. Calculer f(0), f'(0) et f''(0).

6. Sans utiliser la question **4.a.**, montrer que la fonction f est de classe C^{∞} .

7. On cherche le développement en série entière de f sous la forme $\sum_{n=0}^{+\infty} \gamma_n x^n$.

7.a. Déterminer une relation entre les coefficients γ_n .

7.b. A l'aide de cette relation, retrouver le résultat de 4.b.

7.c. A l'aide de la relation de **7.a.**, déterminer le rayon de convergence de la série entière, et déterminer l'expression (sans symbole \sum) des coefficients.

1