Partiel d'analyse S4, juin 2008, Durée : 3h

L'usage d'ordinateur ou de calculette est interdit.

Cet énoncé comporte 3 pages de texte.

Lorsqu'une question exige un raisonnement, la précision de celui-ci aura une part importante dans l'évaluation.

Exercice 1. (10 points)

L'objet de cet exercice est l'étude de l'équation différentielle suivante:

$$E_{\lambda}$$
: $xy'' + (1-x)y' - \lambda y = 0.$

où la fonction y est une fonction inconnue deux fois continûment dérivable de la variable x et λ un réel donné.

1. Il est admis qu'il existe une fonction f_{λ} , somme d'une série entière de rayon de convergence R, strictement positif, prenant la valeur 1 en 0, $(f_{\lambda}(0) = 1)$, solution dans l'intervalle]-R,R[de l'équation différentielle E_{λ} . Cette fonction est définie par la relation :

$$f_{\lambda}(x) = 1 + \sum_{n=1}^{\infty} a_n x^n.$$

(a) Montrer que la suite $(a_n)_n$ vérifie la relation de récurrence suivante :

$$a_{n+1} = \frac{n+\lambda}{(n+1)^2} a_n, \quad \forall n \ge 0.$$

- (b) Déterminer les coefficients $a_n, n \ge 1$, en fonction de l'entier n et du réel λ . Préciser les fonctions f_1, f_0, f_{-1}, f_{-2} .
- (c) Pour quelles valeurs du réel λ la fonction f_{λ} est-elle un polynôme ? Préciser son degré en fonction de la valeur -p donnée au réel λ . Préciser le coefficient du terme de plus haut degré (le terme dominant).
- (d) Quel est le rayon de convergence R de la série entière de terme général $a_n x^n$, $n \ge 1$, lorsque le réel λ est différent des valeurs obtenues précédemment ?

Il est admis, dans la suite, que la fonction f_{λ} est la seule fonction, développable en série entière sur toute la droite réelle, qui soit solution de l'équation différentielle E_{λ} et qui prenne la valeur 1 en 0.

2. Dans cette question le réel λ est égal à 1 :

$$E_1: xy'' + (1-x)y' - y = 0.$$

- (a) Vérifier que la fonction h définie par $h(x) = e^x \int_1^x \frac{e^{-t}}{t} dt$ est solution de E_1 sur $]0, +\infty[$. Vérifier que h est indépendante de f_1 . Déterminer la solution générale de l'équation différentielle E_1 sur la demi-droite $]0, +\infty[$.
- (b) Déterminer de même la solution générale de l'équation différentielle E_1 sur la demidroite $]-\infty,0[$.

- (c) Déterminer enfin les fonctions solutions sur \mathbb{R} de l'équation différentielle E_1 .
- 3. Et ant donné un réel λ , soit g_{λ} la fonction définie sur la droite réelle $\mathbb R$ par la relation :

$$g_{\lambda}(x) = e^x f_{\lambda}(-x).$$

- (a) Déterminer une équation différentielle linéaire du second ordre vérifiée par la fonction g_{λ} .
- (b) En déduire, en admettant que le produit de deux fonctions réelles développables en série entière sur la droite réelle \mathbb{R} est encore une fonction développables en série entière sur la droite réelle \mathbb{R} , que, pour tous réels λ et x:

$$f_{1-\lambda}(x) = e^x f_{\lambda}(-x).$$

- (c) Préciser, lorsque p est un entier strictement positif, les fonctions f_p . En déduire les fonctions f_2 et f_3 .
- (d) Soit p un entier donné supérieur ou égal à 1 ($p \ge 1$). Quelle est, lorsque le réel x croît indéfiniment, la limite de l'expression ci-dessous :

$$\frac{f_{p+1}(x)}{xf_p(x)}?$$

Exercice 2. (7 points)

Pour a un réel donné, on désigne par E_a l'ensemble des fonctions continues sur $[0, +\infty[$ à valeurs réelles et telles que pour tout réel s > a, l'intégrale $\int_0^{+\infty} e^{-st} |f(t)| dt$ existe. Si $f \in E_a$, on pose pour s > a, $(\mathcal{L}f)(s) = \int_0^{+\infty} e^{-st} f(t) dt$.

- 1. Soit $n \in \mathbb{N}$. Montrer que $f: t \mapsto t^n \in E_0$. Déterminer, en admettant que pour tout entier naturel n, $\int_0^{+\infty} u^n e^{-u} du = n!$, la fonction $\mathcal{L}f$.
- 2. Soit P un polynôme.
 - (a) Montrer que $\forall s > 0$, $(\mathcal{L}P)(s) = Q(\frac{1}{s})$, où Q est un polynôme qu'on précisera.
 - (b) En déduire que si $\mathcal{L}P = 0$ alors P = 0.
- 3. (a) Montrer que si f est de classe C^1 sur $[0, +\infty[$ telle que $f \in E_a$ et $f' \in E_a$ alors

$$(\mathcal{L}f')(s) = s(\mathcal{L}f)(s) - f(0), \quad \forall s \in]a, +\infty[.$$

- (b) On suppose que f est de classe C^n sur $[0, +\infty[$ et que $f^{(k)} \in E_a$ pour tout $0 \le k \le n$. Généraliser la relation précédente à $\mathcal{L}f^{(n)}$.
- 4. Soit f une fonction continue sur $[0, +\infty[$; on suppose que pour tout s > a, la fonction $t \mapsto e^{-st} f(t)$ est bornée sur $[0, +\infty[$.
 - (a) Montrer qu'il existe $M \in \mathbb{R}$ tel que

$$e^{-st} |f(t)| \le Me^{-(s-u)t}, \quad s, u > a \text{ et } t \ge 0.$$

- (b) En déduire que $f \in E_a$.
- 5. Soit $f \in E_a$.
 - (a) Montrer que $\forall k \in \mathbb{N}, t \mapsto t^k f(t) \in E_a$.
 - (b) Montrer que $\mathcal{L}f$ est C^{∞} sur $]a, +\infty[$ et exprimer $(\mathcal{L}f)^{(k)}$ à l'aide d'une intégrale.

Exercice 3. (3 points)

Pour tout réel R > 0, on considère les ensembles

$$C_R = [-R, R] \times [-R, R]$$
 et $B_R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}.$

1. Calculer les intégrales doubles

$$I_R = \int \int_{C_R} e^{-(x^2 + y^2)} dx dy$$
 et $J_R = \int \int_{B_R} e^{-(x^2 + y^2)} dx dy$.

2. Montrer que

$$B_R \subset C_R \subset B_{\sqrt{2}R}$$
.

3. En déduire que

$$\lim_{R \to +\infty} I_R = \lim_{R \to +\infty} J_R.$$

4. Retrouver la valeur de l'intégrale impropre

$$\int_0^{+\infty} e^{-x^2} dx.$$