Nicolas Guigui (thèse, Inria) le 1er octobre 2021 à 11h30
par
L’étude de la forme anatomique et du mouvement est au cœur des préoccupations en cardiologie, où des pathologies telles que l’arythmie ou l’hypertension pulmonaire entraînent des anomalies, telles qu’une contraction plus lente ou le grossissement du myocarde, et dont la caractérisation en forme, et en déformation permet d’évaluer la gravité de la maladie ou l’impact d’un traitement. Cette caractérisation nécessite un cadre mathématique prenant en compte les non-linéarités et les invariances propres aux formes, et à leurs déformations, et qui permette de distinguer ces deux facteurs de variabilité.
Les variétés Riemanniennes offrent un cadre naturel qui répond à ces exigences et permet plus généralement de modéliser de nombreux types de données. Peu d’outils numériques sont cependant disponibles pour les applications. Dans cette présentation, nous présentons d’abord la package Python geomstats, qui permet d’effectuer des statistiques et du machine learning sur un grand nombre de variétés. Nous nous concentrerons ensuite sur le transport parallèle, avec d’une part l’analyse des algorithmes d’approximations dits à échelle (Schild’s ladder) pour lesquels nous montrons qu’une convergence avec une vitesse quadratique est atteinte, et d’autre part, sur l’application de cet outil dans le but de normaliser les déformations du ventricule cardiaque droit lors de surcharge en volume et en pression afin de comparer statistiquement chaque pathologie avec le groupe témoin.