Partenaires

CNRS
Logo tutelle
Logo tutelle
Logo tutelle


Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Séminaires > Probabilités Statistiques et réseaux de neurones > Random coefficient AR(1) process with heavy-tailed renewal-switching coefficient and heavy-tailed noise

Vendredi 24 mars 2006 à 12 heures

Random coefficient AR(1) process with heavy-tailed renewal-switching coefficient and heavy-tailed noise

Donatas SURGAILIS (membre de l’Académie des Sciences de Lituanie)

Abstract : We discuss limit behavior of the partial sums process of stationary solution of AR(1) equation X_t = a_t X_{t-1} + \veps_t, with random (renewal-reward) coefficient a_t, taking iid\ values A_j \in [0,1] on consecutive intervals of a stationary renewal process with heavy-tailed interrenewal distribution, and with iid\ innovations \veps_t belonging to the domain of attraction of an \alpha-stable law (0<\alpha\le 2,\alpha \ne 1). Under suitable conditions on the tail parameter of the interrenewal distribution and the singularity parameter of the distribution of A_j near unit root a=1, we show that the partial sums process of X_t converges to a \lambda-stable Lévy process with index \lambda<\alpha. The paper extends the result of Leipus and Surgailis (2003) from finite variance to infinite variance X_t.

Dans la même rubrique :